197 research outputs found

    Kappa-symmetric deformations of M5-brane dynamics

    Full text link
    We calculate the first supersymmetric and kappa-symmetric derivative deformation of the M5-brane worldvolume theory in a flat eleven-dimensional background. By applying cohomological techniques we obtain a deformation of the standard constraint of the superembedding formalism. The first possible deformation of the constraint and hence the equations of motion arises at cubic order in fields and fourth order in a fundamental length scale ll. The deformation is unique up to this order. In particular this rules out any induced Einstein-Hilbert terms on the worldvolume. We explicitly calculate corrections to the equations of motion for the tensor gauge supermultiplet.Comment: 17 pages. Additional comments in section

    Kappa-symmetric Derivative Corrections to D-brane Dynamics

    Full text link
    We show how the superembedding formalism can be applied to construct manifestly kappa-symmetric higher derivative corrections for the D9-brane. We also show that all correction terms appear at even powers of the fundamental length scale ll. We explicitly construct the first potential correction, which corresponds to the kappa-symmetric version of the 4F4\partial^4 F^4, which one finds from the four-point amplitude of the open superstring.Comment: 20 pages. Minor changes, added reference

    Error Resilient Quantum Amplitude Estimation from Parallel Quantum Phase Estimation

    Full text link
    We show how phase and amplitude estimation algorithms can be parallelized. This can reduce the gate depth of the quantum circuits to that of a single Grover operator with a small overhead. Further, we show that for quantum amplitude estimation, the parallelization can lead to vast improvements in resilience against quantum errors. The resilience is not caused by the lower gate depth, but by the structure of the algorithm. Even in cases with errors that make it impossible to read out the exact or approximate solutions from conventional amplitude estimation, our parallel approach provided the correct solution with high probability. The results on error resilience hold for the standard version and for low depth versions of quantum amplitude estimation. Methods presented are subject of a patent application [Quantum computing device: Patent application EP 21207022.1]

    Tagged particle process in continuum with singular interactions

    Full text link
    By using Dirichlet form techniques we construct the dynamics of a tagged particle in an infinite particle environment of interacting particles for a large class of interaction potentials. In particular, we can treat interaction potentials having a singularity at the origin, non-trivial negative part and infinite range, as e.g., the Lennard-Jones potential.Comment: 27 pages, proof for conservativity added, tightened presentatio
    corecore