4,535 research outputs found

    Inequivalent Quantizations of Gauge Theories

    Full text link
    It is known that the quantization of a system defined on a topologically non-trivial configuration space is ambiguous in that many inequivalent quantum systems are possible. This is the case for multiply connected spaces as well as for coset spaces. Recently, a new framework for these inequivalent quantizations approach has been proposed by McMullan and Tsutsui, which is based on a generalized Dirac approach. We employ this framework for the quantization of the Yang-Mills theory in the simplest fashion. The resulting inequivalent quantum sectors are labelled by quantized non-dynamical topological charges.Comment: 24 pages, LaTeX, to be publ. in Int.J.Mod.Phys.

    Dipole responses in Nd and Sm isotopes with shape transitions

    Full text link
    Photoabsorption cross sections of Nd and Sm isotopes from spherical to deformed even nuclei are systematically investigated by means of the quasiparticle-random-phase approximation based on the Hartree-Fock-Bogoliubov ground states (HFB+QRPA) using the Skyrme energy density functional. The gradual onset of deformation in the ground states as increasing the neutron number leads to characteristic features of the shape phase transition. The calculation well reproduce the isotopic dependence of broadening and emergence of a double-peak structure in the cross sections without any adjustable parameter. We also find that the deformation plays a significant role for low-energy dipole strengths. The E1E1 strengths are fragmented and considerably lowered in energy. The summed E1E1 strength up to 10 MeV is enhanced by a factor of five or more.Comment: 5 pages including 6 figure

    Monopole-vortex complex in a theta vacuum

    Full text link
    We discuss aspects of the monopole-vortex complex soliton arising in a hierarchically broken gauge system, G to H to 1, in a theta vacuum of the underlying G theory. Here we focus our attention mainly on the simplest such system with G=SU(2) and H=U(1). A consistent picture of the effect of the theta parameter is found both in a macroscopic, dual picture and in a microscopic description of the monopole-vortex complex soliton.Comment: 18 pages 3 figure

    How does torsional rigidity affect the wrapping transition of a semiflexible chain around a spherical core?

    Full text link
    We investigated the effect of torsional rigidity of a semiflexible chain on the wrapping transition around a spherical core, as a model of nucleosome, the fundamental unit of chromatin. Through molecular dynamics simulation, we show that the torsional effect has a crucial effect on the chain wrapping around the core under the topological constraints. In particular, the torsional stress (i) induces the wrapping/unwrapping transition, and (ii) leads to a unique complex structure with an antagonistic wrapping direction which never appears without the topological constraints. We further examine the effect of the stretching stress for the nucleosome model, in relation to the unique characteristic effect of the torsional stress on the manner of wrapping

    Uniformly frustrated bosonic Josephson-junction arrays

    Full text link
    We derive a uniformly frustrated XYXY model that describes two-dimensional Josephson-junction arrays consisting of rotating Bose-Einstein condensates trapped by both a harmonic trap and a corotating deep optical lattice. The harmonic trap makes the coupling constant of the model have a nonuniform parabolic dependance. We study the ground state through Monte Carlo simulations in a wide range of the frustration parameter ff, revealing a rich variety of vortex patterns.Comment: 5 pages, 2 figure

    Factors in the preparation of fryers and roasters for market

    Get PDF

    Role of low-ll component in deformed wave functions near the continuum threshold

    Get PDF
    The structure of deformed single-particle wave functions in the vicinity of zero energy limit is studied using a schematic model with a quadrupole deformed finite square-well potential. For this purpose, we expand the single-particle wave functions in multipoles and seek for the bound state and the Gamow resonance solutions. We find that, for the Kπ=0+K^{\pi}=0^{+} states, where KK is the zz-component of the orbital angular momentum, the probability of each multipole components in the deformed wave function is connected between the negative energy and the positive energy regions asymptotically, although it has a discontinuity around the threshold. This implies that the Kπ=0+K^{\pi}=0^{+} resonant level exists physically unless the l=0l=0 component is inherently large when extrapolated to the well bound region. The dependence of the multipole components on deformation is also discussed

    Vortex phase diagram in rotating two-component Bose-Einstein condensates

    Full text link
    We investigate the structure of vortex states in rotating two-component Bose-Einstein condensates with equal intracomponent but varying intercomponent coupling constants. A phase diagram in the intercomponent-coupling versus rotation-frequency plane reveals rich equilibrium structures of vortex states. As the ratio of intercomponent to intracomponent couplings increases, the interlocked vortex lattices undergo phase transitions from triangular to square, to double-core lattices, and eventually develop interwoven "serpentine" vortex sheets with each component made up of chains of singly quantized vortices.Comment: 4 pages, 4 figures, revtex

    Vortex molecules in coherently coupled two-component Bose-Einstein condensates

    Full text link
    A vortex molecule is predicted in rotating two-component Bose-Einstein condensates whose internal hyperfine states are coupled coherently by an external field. A vortex in one component and that in the other are connected by a domain wall of the relative phase, constituting a "vortex molecule", which features a nonaxisymmetric (pseudo)spin texture with a pair of merons. The binding mechanism of the vortex molecule is discussed based on a generalized nonlinear sigma model and a variational ansatz. The anisotropy of vortex molecules is caused by the difference in the scattering lengths, yielding a distorted vortex-molecule lattice in fast rotating condensates.Comment: 4 pages, 4 figures, greatly revised versio
    corecore