15,418 research outputs found

    Non-Gaussianity in the HILC foreground-reduced three-year WMAP CMB map

    Full text link
    A detection or nondetection of primordial non-Gaussianity in the CMB data is essential not only to test alternative models of the physics of the early universe but also to discriminate among classes of inflationary models. Given this far reaching consequences of such a non-Gaussianity detection for our understanding of the physics of the early universe, it is important to employ alternative indicators in order to have further information about the Gaussianity features of CMB that may be helpful for identifying their origins. In this way, a considerable effort has recently gone into the design of non-Gaussianity indicators, and in their application in the search for deviation from Gaussianity in the CMB data. Recently we have proposed two new large-angle non-Gaussianity indicators which provide measures of the departure from Gaussianity on large angular scales. We have used these indicators to carry out analyses of Gaussianity of the single frequency bands and of the available foreground-reduced {\it five-year} maps with and without the KQ75 mask. Here we extend and complement these studies by performing a new analysis of deviation from Gaussianity of the {\it three-year} harmonic ILC (HILC) foreground-reduced full-sky and KQ75 masked maps obtained from WMAP data. We show that this full-sky foreground-reduced maps presents a significant deviation from Gaussianity, which is brought down to a level of consistency with Gaussianity when the KQ75 mask is employed.Comment: 6 pages, 1 figure. To appear in IJMPD (2010). V2: Corrected ref.[8]

    Electromagnetic Cascade in the Early Universe and its Application to the Big-Bang Nucleosynthesis

    Full text link
    We investigate the electromagnetic cascade initiated by injection of very high energy photons in the early Universe and calculate the cascade spectrum by solving a set of Boltzmann equations numerically. In the calculation we take account of Compton scattering off the background electrons and pair creation off the background nucleons as well as photon-photon processes and inverse Compton scattering. We also apply our cascade spectrum to the big bang nucleosynthesis with photo-dissociation processes due to heavy unstable particles and obtain the constraint on their lifetime and abundance.Comment: 21pages (compressed and uuencoded postscript file including 6 figures

    Gravitino Production in the Inflationary Universe and the Effects on Big-Bang Nucleosynthesis

    Full text link
    Gravitino production and decay in the inflationary universe are reexamined. Assuming that the gravitino mainly decays into a photon and a photino, we calculate the upperbound on the reheating temperature. Compared to previous works, we have essentially improved the following two points: (i) the helicity ±32\pm\frac{3}{2} gravitino production cross sections are calculated by using the full relevant terms in the supergravity lagrangian, and (ii) the high energy photon spectrum is obtained by solving the Boltzmann equations numerically. Photo-dissociation of the light elements (D, T, 3^3He, 4^4He) leads to the most stringent upperbound on the reheating temperature, which is given by (10610^{6}--10910^{9})GeV for the gravitino mass 100GeV--1TeV. On the other hand, requiring that the present mass density of photino should be smaller than the critical density, we find that the reheating temperature have to be smaller than (101110^{11}--101210^{12})GeV for the photino mass (10--100)GeV, irrespectively of the gravitino mass. The effect of other decay channels is also considered

    Double inflation in supergravity and the primordial black hole formation

    Full text link
    We study a double inflation model (a hybrid inflation + a new inflation) in supergravity and discuss the formation of primordial black holes (PBHs) with mass \sim 10^{-20}-10^{5}M_{\odot}. We find that in a wide range of parameter space, we obtain PBHs which amount to \Omega \simeq 1, i.e., PBH dark matter. Also, we find a set of inflation parameters which produces PBHs evaporating now. Those PBHs may be responsible for antiproton fluxes observed by the BESS experiment.Comment: 14 pages, 2 figures (RevTeX file

    Cosmological Axion Problem in Chaotic Inflationary Universe

    Get PDF
    We investigate two cosmological axion problems (isocurvature fluctuations and domain-wall formation) in chaotic inflationary universe. It is believed that these problems are solved if potential for the Peccei-Quinn scalar field is very flat. However, we find that too many domain walls are produced through parametric resonance decay of the Peccei-Quinn scalar field. Only the axion model with N=1(N: QCD anomaly factor) is consistent with observations. We also point out that the flat potential is naturally obtained in a supersymmetric extension of the Peccei-Quinn model. If Peccei-Quinn breaking scale FaF_a is about 10^{12} GeV, this model predicts anisotropies of cosmic microwave background radiation due to the axion isocurvature fluctuations which may be detectable in future observations.Comment: LaTeX2e 19 pages including 5 figures (use epsf.sty), revised version to be published in Physics Letters

    Affleck-Dine Baryogenesis after Thermal Inflation

    Full text link
    We argue that an extension of the Minimal Supersymmetric Standard Model that gives rise to viable thermal inflation, and so does not suffer from a Polonyi/moduli problem, should contain right-handed neutrinos which acquire their masses due to the vacuum expectation value of the flaton that drives thermal inflation. This strongly disfavours SO(10) Grand Unified Theories. The μ\mu-term of the MSSM should also arise due to the vev of the flaton. With the extra assumption that mL2mHu2<0 m_L^2 - m_{H_u}^2 < 0 , but of course mL2mHu2+μ2>0 m_L^2 - m_{H_u}^2 + |\mu|^2 > 0 , we show that a complicated Affleck-Dine type of baryogenesis employing an LHuLH_u DD-flat direction can naturally generate the baryon asymmetry of the Universe.Comment: 17 pages, LaTeX, 4 postscript figures, version to be published in Phys. Rev. D, new figures, references added, minor changes in the tex

    A Study of Gaussianity in CMB band maps

    Full text link
    The detection of non-Gaussianity in the CMB data would rule out a number of inflationary models. A null detection of non-Gaussianity, instead, would exclude alternative models for the early universe. Thus, a detection or non-detection of primordial non-Gaussianity in the CMB data is crucial to discriminate among inflationary models, and to test alternative scenarios. However, there are various non-cosmological sources of non-Gaussianity. This makes important to employ different indicators in order to detect distinct forms of non-Gaussianity in CMB data. Recently, we proposed two new indicators to measure deviation from Gaussianity on large angular scales, and used them to study the Gaussianity of the raw band WMAP maps with and without the KQ75 mask. Here we extend this work by using these indicators to perform similar analyses of deviation from Gaussianity of the foreground-reduced Q, V, and W band maps. We show that there is a significant deviation from Gaussianity in the considered full-sky maps, which is reduced to a level consistent with Gaussianity when the KQ75 mask is employed.Comment: 5 pages, 2 PS figures, uses ws-ijmpd.cls ; to be published in the International Journal of Modern Physics

    Inhomogeneous baryogenesis, cosmic antimatter, and dark matter

    Full text link
    A model of inhomogeneous baryogenesis based on the Affleck and Dine mechanism is described. A simple coupling of the scalar baryon field to the inflaton allows for formation of astronomically significant bubbles with a large baryon (or antibaryon) asymmetry. During the farther evolution these domains form compact stellar-like objects, or lower density clouds, or primordial black holes of different size. According to the scenario, such high baryonic number objects occupy relatively small fraction of space but despite that they may significantly contribute to the cosmological mass density. For some values of parameters the model allows the possibility the whole dark matter in the universe to be baryonic. Furthermore, the model allows the existence of the antibaryonic B-bubbles, i.e. a significant fraction of the mass density in the universe can be in the form of the compact antimatter objects (e.g. anti-stars).Comment: 31 pages, 5 figures, three references are adde
    corecore