24 research outputs found

    O-Antigen Delays Lipopolysaccharide Recognition and Impairs Antibacterial Host Defense in Murine Intestinal Epithelial Cells

    Get PDF
    Although Toll-like receptor (TLR) 4 signals from the cell surface of myeloid cells, it is restricted to an intracellular compartment and requires ligand internalization in intestinal epithelial cells (IECs). Yet, the functional consequence of cell-type specific receptor localization and uptake-dependent lipopolysaccharide (LPS) recognition is unknown. Here, we demonstrate a strikingly delayed activation of IECs but not macrophages by wildtype Salmonella enterica subsp. enterica sv. (S.) Typhimurium as compared to isogenic O-antigen deficient mutants. Delayed epithelial activation is associated with impaired LPS internalization and retarded TLR4-mediated immune recognition. The O-antigen-mediated evasion from early epithelial innate immune activation significantly enhances intraepithelial bacterial survival in vitro and in vivo following oral challenge. These data identify O-antigen expression as an innate immune evasion mechanism during apical intestinal epithelial invasion and illustrate the importance of early innate immune recognition for efficient host defense against invading Salmonella

    The Major Surface-Associated Saccharides of Klebsiella pneumoniae Contribute to Host Cell Association

    Get PDF
    Analysing the pathogenic mechanisms of a bacterium requires an understanding of the composition of the bacterial cell surface. The bacterial surface provides the first barrier against innate immune mechanisms as well as mediating attachment to cells/surfaces to resist clearance. We utilised a series of Klebsiella pneumoniae mutants in which the two major polysaccharide layers, capsule and lipopolysaccharide (LPS), were absent or truncated, to investigate the ability of these layers to protect against innate immune mechanisms and to associate with eukaryotic cells. The capsule alone was found to be essential for resistance to complement mediated killing while both capsule and LPS were involved in cell-association, albeit through different mechanisms. The capsule impeded cell-association while the LPS saccharides increased cell-association in a non-specific manner. The electrohydrodynamic characteristics of the strains suggested the differing interaction of each bacterial strain with eukaryotic cells could be partly explained by the charge density displayed by the outermost polysaccharide layer. This highlights the importance of considering not only specific adhesin:ligand interactions commonly studied in adherence assays but also the initial non-specific interactions governed largely by the electrostatic interaction forces

    Molecular modelling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide.

    No full text
    Molecular modelling techniques have been applied to calculate the three-dimensional architecture and the conformational flexibility of a complete bacterial S-form lipopolysaccharide (LPS) consisting of a hexaacyl lipid A identical to Escherichia coli lipid A, a complete Salmonella typhimurium core oligosaccharide portion, and four repeating units of the Salmonella serogroup B O-specific chain. X-ray powder diffraction experiments on dried samples of LPS were carried out to obtain information on the dimensions of the various LPS partial structures. Up to the Ra-LPS structure, the calculated model dimensions were in good agreement with experimental data and were 2.4 nm for lipid A, 2.8 nm for Re-LPS, 3.5 nm for Rd-LPS, and 4.4 nm for Ra-LPS. The maximum length of a stretched S-form LPS model bearing four repeating units was evaluated to be 9.6 nm; however, energetically favored LPS conformations showed the O-specific chain bent with respect to the Ra-LPS portion and significantly smaller dimensions (about 5.0 to 5.5 nm). According to the calculations, the Ra-LPS moiety has an approximately cylindrical shape and is conformationally well defined, in contrast to the O-specific chain, which was found to be the most flexible portion within the molecule

    Effects of sex, stock, and environment on the shape of known-age Atlantic cod ( Gadus morhua ) otoliths

    No full text
    The effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths from the Faroe Islands were investigated. Moreover, the feasibility of otolith shape analysis for stock identification was evaluated. The shape was described by using several normalized Fourier descriptors and morphometric variables. There were no consistent differences between the left and right otoliths and between sexes within different age classes, stocks, and environments. With our experimental design, we could evaluate the relative importance of genetic and environmental conditions (water temperature and diet regime) on otolith shape and morphometrics. Using otolith shape, cod individuals were significantly separated into Bank and Plateau stocks. Total classification success was between 79% and 85% between stocks and between 85% and 96% between environments for the different age classes. The significant differences in otolith shape between Faroe Bank and Faroe Plateau cod stocks provided a phenotypic basis for stock separation. Stock and environmental influences were substantial in determining the shape of cod otoliths. [References: 38
    corecore