335 research outputs found

    Automated detection of proliferative retinopathy in clinical practice

    Get PDF
    Timely intervention for diabetic retinopathy (DR) lessens the possibility of blindness and can save considerable costs to health systems. To ensure that interventions are timely and effective requires methods of screening and monitoring pathological changes, including assessing outcomes. Fractal analysis, one method that has been studied for assessing DR, is potentially relevant in today’s world of telemedicine because it provides objective indices from digital images of complex patterns such as are seen in retinal vasculature, which is affected in DR. We introduce here a protocol to distinguish between nonproliferative (NPDR) and proliferative (PDR) changes in retinal vasculature using a fractal analysis method known as local connected dimension (Dconn) analysis. The major finding is that compared to other fractal analysis methods, Dconn analysis better differentiates NPDR from PDR (p = 0.05). In addition, we are the first to show that fractal analysis can be used to differentiate between NPDR and PDR using automated vessel identification. Overall, our results suggest this protocol can complement existing methods by including an automated and objective measure obtainable at a lower level of expertise that experts can then use in screening for and monitoring DR

    Glucose Gradients Influence Zonal Matrix Deposition in 3D Cartilage Constructs

    Get PDF
    Reproducing the native collagen structure and glycosaminoglycan (GAG) distribution in tissue-engineered cartilage constructs is still a challenge. Articular cartilage has a specific nutrient supply and mechanical environment due to its location and function in the body. Efforts to simulate this native environment have been reported through the use of bioreactor systems. However, few of these devices take into account the existence of gradients over cartilage as a consequence of the nutrient supply by diffusion. We hypothesized that culturing chondrocytes in an environment, in which gradients of nutrients can be mimicked, would induce zonal differentiation. Indeed, we show that glucose gradients facilitating a concentration distribution as low as physiological glucose levels enhanced a zonal chondrogenic capacity similar to the one found in native cartilage. Furthermore, we found that the glucose consumption rates of cultured chondrocytes were higher under physiological glucose concentrations and that GAG production rates were highest in 5 mM glucose. From these findings, we concluded that this condition is better suited for matrix deposition compared to 20 mM glucose standard used in a chondrocyte culture system. Reconsidering the culture conditions in cartilage tissue engineering strategies can lead to cartilaginous constructs that have better mechanical and structural properties, thus holding the potential of further enhancing integration with the host tissue
    corecore