530 research outputs found

    Beyond Traditional RAFT: Alternative Activation of Thiocarbonylthio Compounds for Controlled Polymerization.

    Full text link
    Recent developments in polymerization reactions utilizing thiocarbonylthio compounds have highlighted the surprising versatility of these unique molecules. The increasing popularity of reversible addition-fragmentation chain transfer (RAFT) radical polymerization as a means of producing well-defined, 'controlled' synthetic polymers is largely due to its simplicity of implementation and the availability of a wide range of compatible reagents. However, novel modes of thiocarbonylthio activation can expand the technique beyond the traditional system (i.e., employing a free radical initiator) pushing the applicability and use of thiocarbonylthio compounds even further than previously assumed. The primary advances seen in recent years are a revival in the direct photoactivation of thiocarbonylthio compounds, their activation via photoredox catalysis, and their use in cationic polymerizations. These synthetic approaches and their implications for the synthesis of controlled polymers represent a significant advance in polymer science, with potentially unforeseen benefits and possibilities for further developments still ahead. This Research News aims to highlight key works in this area while also clarifying the differences and similarities of each system

    Progress and Perspectives Beyond Traditional RAFT Polymerization.

    Full text link
    The development of advanced materials based on well-defined polymeric architectures is proving to be a highly prosperous research direction across both industry and academia. Controlled radical polymerization techniques are receiving unprecedented attention, with reversible-deactivation chain growth procedures now routinely leveraged to prepare exquisitely precise polymer products. Reversible addition-fragmentation chain transfer (RAFT) polymerization is a powerful protocol within this domain, where the unique chemistry of thiocarbonylthio (TCT) compounds can be harnessed to control radical chain growth of vinyl polymers. With the intense recent focus on RAFT, new strategies for initiation and external control have emerged that are paving the way for preparing well-defined polymers for demanding applications. In this work, the cutting-edge innovations in RAFT that are opening up this technique to a broader suite of materials researchers are explored. Emerging strategies for activating TCTs are surveyed, which are providing access into traditionally challenging environments for reversible-deactivation radical polymerization. The latest advances and future perspectives in applying RAFT-derived polymers are also shared, with the goal to convey the rich potential of RAFT for an ever-expanding range of high-performance applications

    Search for Theta+ via K+p -> pi+X reaction with a 1.2 GeV/c K+ beam

    Get PDF
    The Theta+ was searched for via the K+p -> pi+X reaction using the 1.2 GeV/c K+ beam at the K6 beam line of the KEK-PS 12 GeV Proton Synchrotron. In the missing mass spectrum of the K+p -> pi+X reaction, no clear peak structure was observed. Therefore a 90 % C.L. upper limit of 3.5 ub/sr was derived for the differential cross section averaged over 2degree to 22degree in the laboratory frame of the K+p -> pi+Theta+ reaction. This upper limit is much smaller than the theoretical calculation for the t-channel process where a K0* is exchanged. From the present result, either the t-channel process is excluded or the coupling constant of g_{K*N\Theta} is quite small.Comment: 11pages, 13figure

    Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

    Get PDF
    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms, for diagnostic or anti-infective applications, but which can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerisation of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms which produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualisation of pathogens

    Nanocomposites: synthesis, structure, properties and new application opportunities

    Full text link
    corecore