234 research outputs found
Pediatric liver transplantation from neonatal donors
Sixteen recipients of neonatal liver grafts were compared with 114 contemporaneous pediatric recipients of grafts from older donors. Graft and patient survival were worse in the neonatal group although the differences were not statistically significant. Patients with neonatal livers who had no technical complications required a longer time postoperatively to correct jaundice and a prolonged prothrombin time. These functional differences were limited to the 1st postoperative month and the end result was the same as with liver transplantation from older donors. © 1992 Springer-Verlag
Pretransplant assessment of human liver grafts by plasma lecithin: cholesterol acyltransferase (LCAT) activity in multiple organ donors.
In spite of the improved outcome of orthotopic liver transplantation (OLTx), primary graft nonfunction remains one of the life-threatening problems following OLTx. The purpose of this study was to evaluate plasma lecithin: cholesterol acyltransferase (LCAT) activity in multiple organ donors as a predictor of liver allograft viability prior to OLTx. Thirty-nine donors were studied during a 5-month period between April and August 1988. Allograft hepatectomy was performed using a rapid technique or its minor modification with hilar dissections, and the allografts were stored cold (4 degrees C) in University of Wisconsin (UW) solution. Early post-transplant allograft function was classified as good, fair, or poor, according to the highest SGOT, SGPT, and prothrombin time within 5 days following OLTx. Procurement records were reviewed to identify donor data, which included conventional liver function tests, duration of hospital stay, history of cardiac arrest, and graft ischemic time. Blood samples from the donors were drawn immediately prior to aortic crossclamp, and from these plasma LCAT activity was determined. Plasma LCAT activity of all donors was significantly lower than that of healthy controls (12.4 +/- 8.0 vs 39.2 +/- 13.3 micrograms/ml per hour, P less than 0.01). LCAT activity (16.4 +/- 8.3 micrograms/ml per hour) in donors of grafts with good function was significantly higher than that in those with fair (8.6 +/- 4.5 micrograms/ml per hour, P less than 0.01) or poor (7.3 +/- 2.4 micrograms/ml per hour, P less than 0.01) function.(ABSTRACT TRUNCATED AT 250 WORDS
Chlamydial heat shock proteins and disease pathology: new paradigms for old problems?
The mucosal pathogen Chlamydia trachomatis affects hundreds of millions of people worldwide and is a significant cause of sexually transmitted disease. Although most acute infections can be easily managed, complications often occur that can be especially severe in women. It has been proposed that increased exposure to conserved chlamydial antigens, such as through reinfection or persistent infection, results in chronic inflammation and tissue scarring and contributes to the pathogenesis of endometrial and fallopian tube damage. This immunopathologic damage is believed to be a principal cause of ectopic pregnancy and tubal factor infertility. The chlamydial heat shock protein Hsp60, a homolog of Escherichia coli GroEL, has been identified as one protein capable of eliciting intense mononuclear inflammation. Furthermore, several studies have revealed a correlation between Hsp60 responses and the immunopathologic manifestations of human chlamydial disease. The role of additional antigens in the immunopathologic response to chlamydiae is currently undefined. A prime candidate, however, is the chlamydial GroES homolog Hsp10, which is genetically and physiologically linked to Hsp60. Recent studies provide data to suggest that immune reactivity to Hsp10 is significantly associated with tubal infertility in a chlamydiae-exposed population. Chlamydia pneumoniae is a more recently defined chlamydial species that has been implicated in a variety of ways with chronic disease processes, such as adult onset asthma and atherosclerosis. Evidence indicates that Hsp60 is present in human atheroma and may play a role in lesion development by direct activation of macrophages. Hsp60 causes the elaboration of inflammatory cytokines, the induction of metalloproteinase, and the oxidation of low density lipoprotein. Each of these events is directly associated with the progress of atherosclerosis. Thus, chlamydial heat shock proteins may function in at least two ways to promote chronic disease: first by direct antigenic stimulation and second as signal transducers that result in macrophage activation. These concepts in disease pathology are discussed in the context of chlamydial infections
Personal experience with the procurement of 132 liver allografts
A single donor surgeon's experience procuring the livers from 132 donors is described. Thirty-seven grafts (28.9%) had hepatic arterial anomalies, 19 (14.4%) of which required arterial reconstruction prior to transplantation. Of the 121 grafts evaluated for early function, 103 grafts (85.2%) functioned well, whereas 14 grafts (11.6%) functioned poorly and 4 grafts (3.3%) failed to function at all. The variables associated with less than optimal function of the graft consisted of donor age (P<0.05), duration of donor's stay in the intensive care unit (P<0.005), abnormal graft appearance (P<0.05), and such recipient problems as vascular thromboses during or immediately following transplantation (P<0.005). A new preservation fluid, University of Wisconsin solution, allowed safe and longer cold storage of the liver allograft than did Euro-Collins' solution (P<0.0001). A parameter of liver allograft viability, which is simple and predictive of allograft function prior to the actual transplant procedure, is urgently needed. © 1989 Springer-Verlag
History of clinical transplantation
How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York
Anatomical variations of the hepatic artery: a closer view of rare unclassified variants
Background: Defining the hepatic artery anatomy is of great importance for both surgeons and radiologists. Michel classification was designed to classify hepatic artery variations. Nevertheless, there are variations that do not fit into this classification. In this study, we aim to define the incidence of all variations in a healthy liver donor by reviewing their CT scan with special emphasis on variations that do not fit in any of the Michel classes.
Materials and methods: A retrospective analysis of CT scan of donors and potential liver donors who were evaluated by triphasic CT scan. The CT scans were reviewed independently by a radiologist and two transplant surgeons. Cases that did not fit in any of the Michel classes were classified as class 0.
Results: Out of 241 donors, 210 were classified within the Michel classification, of which 60.9 % were class I and 9.1% class II. Thirty-one donors (12.9%) classified as class 0. Of which, nine, three, two and three had replaced right hepatic artery from pancreaticoduodenal artery, gastroduodenal artery, aorta and celiac artery, respectively. Two and 6 donors had accessory right hepatic artery from pancreaticoduodenal artery and gastroduodenal artery respectively. Segment 4 artery originated from left and right hepatic artery in 56.8% and 31.9%, respectively.
Conclusions: A great caution should be taken when evaluating the hepatic artery anatomy, clinicians should anticipate and be familiar with the rare unclassified variations of the hepatic artery
History of clinical transplantation
The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts
Uptake and Accumulation of Oxidized Low-Density Lipoprotein during Mycobacterium tuberculosis Infection in Guinea Pigs
The typical host response to infection of humans and some animals by M. tuberculosis is the accumulation of reactive oxygen species generating inflammatory cells into discrete granulomas, which frequently develop central caseous necrosis. In previous studies we showed that infection of immunologically naïve guinea pigs with M. tuberculosis leads to localized and systemic oxidative stress that results in a significant depletion of serum total antioxidant capacity and the accumulation of malondialdehyde, a bi-product of lipid peroxidation. Here we show that in addition, the generation of excessive reactive oxygen species in vivo resulted in the accumulation of oxidized low density lipoproteins (OxLDL) in pulmonary and extrapulmonary granulomas, serum and lung macrophages collected by bronchoalveolar lavage. Macrophages from immunologically naïve guinea pigs infected with M. tuberculosis also had increased surface expression of the type 1 scavenger receptors CD36 and LOX1, which facilitate the uptake of oxidized host macromolecules including OxLDL. Vaccination of guinea pigs with Bacillus Calmette Guerin (BCG) prior to aerosol challenge reduced the bacterial burden as well as the intracellular accumulation of OxLDL and the expression of macrophage CD36 and LOX1. In vitro loading of guinea pig lung macrophages with OxLDL resulted in enhanced replication of bacilli compared to macrophages loaded with non-oxidized LDL. Overall, this study provides additional evidence of oxidative stress in M. tuberculosis infected guinea pigs and the potential role OxLDL laden macrophages have in supporting intracellular bacilli survival and persistence
Histone Methylation by NUE, a Novel Nuclear Effector of the Intracellular Pathogen Chlamydia trachomatis
Sequence analysis of the genome of the strict intracellular pathogen Chlamydia trachomatis revealed the presence of a SET domain containing protein, proteins that primarily function as histone methyltransferases. In these studies, we demonstrated secretion of this protein via a type III secretion mechanism. During infection, the protein is translocated to the host cell nucleus and associates with chromatin. We therefore named the protein nuclear effector (NUE). Expression of NUE in mammalian cells by transfection reconstituted nuclear targeting and chromatin association. In vitro methylation assays confirmed NUE is a histone methyltransferase that targets histones H2B, H3 and H4 and itself (automethylation). Mutants deficient in automethylation demonstrated diminished activity towards histones suggesting automethylation functions to enhance enzymatic activity. Thus, NUE is secreted by Chlamydia, translocates to the host cell nucleus and has enzymatic activity towards eukaryotic substrates. This work is the first description of a bacterial effector that directly targets mammalian histones
- …
