19,787 research outputs found
The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment
We developed a highly sensitive, reliable and portable automatic system
(H) to monitor the radon concentration of the underground experimental
halls of the Daya Bay Reactor Neutrino Experiment. H is able to measure
radon concentration with a statistical error less than 10\% in a 1-hour
measurement of dehumidified air (R.H. 5\% at 25C) with radon
concentration as low as 50 Bq/m. This is achieved by using a large radon
progeny collection chamber, semiconductor -particle detector with high
energy resolution, improved electronics and software. The integrated radon
monitoring system is highly customizable to operate in different run modes at
scheduled times and can be controlled remotely to sample radon in ambient air
or in water from the water pools where the antineutrino detectors are being
housed. The radon monitoring system has been running in the three experimental
halls of the Daya Bay Reactor Neutrino Experiment since November 2013
Properties of a magnetic superconductor with weak magnetization - application to
Using a Ginsburg-Landau free energy functional, we study the phase
diagram of a weak magnetic superconductor, where the magnetization from the
magnetic component is marginal in supporting a spontaneous vortex phase in
absence of external magnetic field. In particular, the competition between the
spiral state and spontaneous vortex phase is analysed. Our theory is applied to
understand the magnetic properties of .Comment: 13 pages, 4 postscript figure
Finding Faces in Cluttered Scenes using Random Labeled Graph Matching
An algorithm for locating quasi-frontal views of human faces in cluttered scenes is presented. The algorithm works by coupling a set of local feature detectors with a statistical model of the mutual distances between facial features it is invariant with respect to translation, rotation (in the plane), and scale and can handle partial occlusions of the face. On a challenging database with complicated and varied backgrounds, the algorithm achieved a correct localization rate of 95% in images where the face appeared quasi-frontally
Novel Phases and Finite-Size Scaling in Two-Species Asymmetric Diffusive Processes
We study a stochastic lattice gas of particles undergoing asymmetric
diffusion in two dimensions. Transitions between a low-density uniform phase
and high-density non-uniform phases characterized by localized or extended
structure are found. We develop a mean-field theory which relates
coarse-grained parameters to microscopic ones. Detailed predictions for
finite-size () scaling and density profiles agree excellently with
simulations. Unusual large- behavior of the transition point parallel to
that of self-organized sandpile models is found.Comment: 7 pages, plus 6 figures uuencoded, compressed and appended after
source code, LATeX, to be published as a Phys. Rev. Let
Heuristic derivation of continuum kinetic equations from microscopic dynamics
We present an approximate and heuristic scheme for the derivation of
continuum kinetic equations from microscopic dynamics for stochastic,
interacting systems. The method consists of a mean-field type, decoupled
approximation of the master equation followed by the `naive' continuum limit.
The Ising model and driven diffusive systems are used as illustrations. The
equations derived are in agreement with other approaches, and consequences of
the microscopic dependences of coarse-grained parameters compare favorably with
exact or high-temperature expansions. The method is valuable when more
systematic and rigorous approaches fail, and when microscopic inputs in the
continuum theory are desirable.Comment: 7 pages, RevTeX, two-column, 4 PS figures include
Context-awareness for mobile sensing: a survey and future directions
The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions
Technology development of titanium dioxide photocatalytic water-splitting for hydrogen production
简单介绍了二氧化钛光催化分解水制氢的基本原理。综述了加入牺牲剂、碳酸钠、贵金属负载化、金属离子掺杂、阴离子掺杂、染料光敏化、半导体复合以及离子注入等提高二氧化钛光催化制氢的方法,讨论了这几种改性技术的机理以及对提高二氧化钛在可见光下的制氢效率的作用。重点讨论了阴离子掺杂和离子注入技术的机理和研究进展,指出离子注入是目前扩展二氧化钛光响应的最为有效的技术。最后讨论了光催化分解水制氢的氢氧分离问题,并通过与其他制氢技术的对比分析,指出光催化制氢将是通往氢经济的非常有潜力的制氢技术。The basic mechanism of titanium dioxide photocatalytic water-splitting for hydrogen production is introduced. The methods to enhance hydrogen production are reviewed, including addition of sacrificial reagent, addition of sodium carbonate, noble metal loading, metal ion doping, anion doping, dye sensitization, semiconductor composition and ion implantation. The mechanism of photocatalyst modification methods and their effects on hydrogen production are discussed. Emphasis is particularly given to anion doping and metal ion-implantation. It can be seen that metal ion-implantation is presently the most effective method to expand light response of titanium dioxide into visible region. The practical consideration oxygen and hydrogen gas separation, is also addressed. Compared with other hydrogen production technologies, photocatalytic water-splitting hydrogen production is a promising technology toward hydrogen economy.published_or_final_versio
- …