5 research outputs found

    Polymeric-based microneedle arrays as potential platforms in the development of drugs delivery systems

    No full text
    Background: Microscopic patches as quite promising platforms in transdermal drug delivery suffer from conventional injections. In other hand, a wide range of pharmacokinetics, ranging from fast oral administration to sustained drug delivery, can be implemented with the help of microneedle arrays (MNAs). Aim of Review: Hence, in this paper, we overviewed different kinds of MNAs such as solid/coated, hollow, porous, hydrogel/swellable, and merged-tip geometry followed by introducing different types of material (silicon, glass, ceramics, dissolving and biodegradable polymers, and hydrogel) used for fabrication of MNAs. Afterwards, some conventional and brand-new simple and customizable MN mold fabrication techniques were surveyed. Polymeric MNAs have received a great deal of attention due to their potential biocompatibility and biodegradability in comparison to other materials. Therefore, we also covered different kinds of polymers such as hydrogel/swellable, dissolving and biodegradable analogues used for the development of MNAs as potential candidates in drug delivery systems (DDSs). Finally, we discussed different challenges and future perspectives in the aspect of MNAs-based drug delivery platforms. Key Scientific Concepts of Review: This review may provide guidelines for the rational design of polymeric MNAs-based DDSs for promising programmable drug release and enhanced therapeutic effect.Scopu

    Fabrication of inorganic alumina particles at nanoscale by a pulsed laser ablation technique in liquid and exploring their protein binding, anticancer and antipathogenic activities

    No full text
    The interaction of nanoparticles with biological systems can provide useful information about their therapeutic applications. The aluminum nanoparticles (Al2O3 NPs) were synthesized by laser ablation technique and well-characterized by different methods. Fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking studies were employed to evaluate the effect of Al2O3 NPs on the protein structure. Growth inhibitory and apoptotic effects of the Al2O3 NPs against K562 cancer cells and lymphocyte cells were assessed using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT), flow cytometry, and real time polymerase chain reaction (PCR) assays. The antipathogenic activity of Al2O3 NPs against a diverse range of Gram-negative and Gram-positive pathogens was explored through a disk diffusion method. The characterization techniques determined that the Al2O3 NPs were successfully synthesized in the nanoscales. Intrinsic, 1-anilino-8-naphthalenesulfonate (ANS) and acrylamide fluorescence spectroscopy studies disclosed that Al2O3 NPs can partially change the tertiary structure of human serum albumin (HSA), whereas CD spectroscopy investigation depicted that the secondary structure of HSA remained intact. Molecular docking investigation also manifest that the Al2O3 nano-clusters preferably bind to electrostatic residues. Al2O3 NPs exhibited promising and selective anticancer features through reactive oxygen species (ROS) production, apoptosis induction, and elevation of Bax/Bcl-2 mRNA ratio. Furthermore, the Al2O3 NP showed a remarkable antibacterial activity against both Gram-negative and Gram-positive pathogens. In conclusion, it may be suggested that the synthesized Al2O3 NPs can be integrated in the development of anticancer and antipathogenic agents.Scopu
    corecore