12 research outputs found

    A new breast tomosynthesis imaging method: Continuous Sync-and-Shoot - technical feasibility and initial experience

    Get PDF
    Background Digital breast tomosynthesis (DBT) is gaining popularity in breast imaging. There are several different technical approaches for conducting DBT imaging. Purpose To determine optimal imaging parameters, test patient friendliness, evaluate the initial diagnostic performance, and describe diagnostic advances possible with the new Continuous Sync-and-Shoot method. Material and Methods Thirty-six surgical breast specimens were imaged with digital mammography (DM) and a prototype of a DBT system (Planmed Oy, Helsinki, Finland). We tested the patient friendliness of the sync-and-shoot movement without radiation exposure in eight volunteers. Different imaging parameters were tested with 20 specimens to identify the optimal combination: angular range 30 degrees, 40 degrees, and 60 degrees; pixel binning; Rhodium (Rh) and Silver (Ag) filtrations; and different kV and mAs values. Two breast radiologists evaluated 16 DM and DBT image pairs and rated six different image properties. Imaging modalities were compared with paired t-test. Results The Continuous Sync-and-Shoot method produced diagnostically valid images. Five out of eight volunteers felt no/minimal discomfort, three experienced mild discomfort from the tilting movement of the detector, with the motion being barely recognized. The combination of 30 degrees, Ag filtering, and 2 x 2 pixel binning produced the best image quality at an acceptable dose level. DBT was significantly better in all six evaluated properties (P < 0.05). Mean Dose(DBT)/Dose(DM) ratio was 1.22 (SD = 0.42). Conclusion The evaluated imaging method is feasible for imaging and analysing surgical breast specimens and DBT is significantly better than DM in image evaluation

    Temperature and time stability of whole blood lactate: implications for feasibility of pre-hospital measurement.

    Get PDF
    Background To determine the time and temperature stability of whole blood lactate using experimental conditions applicable to the out-of-hospital environment. Findings We performed a prospective, clinical laboratory-based study at an academic hospital. Whole blood lactate was obtained by venipuncture from five post-prandial, resting subjects. Blood was stored in lithium heparinized vacutainers in three temperature conditions: 1) room temperature (20°C), 2) wrapped in a portable, instant ice pack (0°C), or 3) wet ice (0°C). Lactate concentrations (mmol/L) were measured at 0, 5, 10, 20, and 30 minutes after sampling, and compared using repeated measures analysis of variance. Mean baseline lactate among resting subjects (N = 5) was 1.24 mmol/L (95%CI: 0.49,1.98 mmol/L). After 30 minutes, lactate concentration increased, on average, by 0.08 mmol/L (95%CI: 0.02,0.13 mmol/L), 0.18 mmol/L (95%CI: 0.07,0.28 mmol/L), and 0.36 mmol/L (95%CI: 0.24,0.47 mmol/L) when stored in wet ice, ice pack, and room temperature, respectively. The increase in lactate was similar in samples wrapped in portable ice pack or stored in wet ice at all time points (p > 0.05), and met criteria for equivalence at 30 minutes. However, lactate measurements from whole blood stored at room temperature were significantly greater, on average, than wet ice or portable ice pack within five and ten minutes, respectively (p < 0.05). Conclusions Whole blood lactate measurements using samples stored in a portable ice pack are similar to wet ice for up to 30 minutes. These conditions are applicable to the out-of-hospital environment, and should inform future studies of pre-hospital measurement of lactate.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85785/1/Seymour - Temperature and time stability.pd

    The effect of 50% compared to 100% inspired oxygen fraction on brain oxygenation and post cardiac arrest mitochondrial function in experimental cardiac arrest

    No full text
    BACKGROUND AND AIM: We hypothesised that the use of 50% compared to 100% oxygen maintains cerebral oxygenation and ameliorates the disturbance of cardiac mitochondrial respiration during cardiopulmonary resuscitation (CPR). METHODS: Ventricular fibrillation (VF) was induced electrically in anaesthetised healthy adult pigs and left untreated for seven minutes followed by randomisation to manual ventilation with 50% or 100% oxygen and mechanical chest compressions (LUCAS\uae). Defibrillation was performed at thirteen minutes and repeated if necessary every two minutes with 1mg intravenous adrenaline. Cerebral oxygenation was measured with near-infrared spectroscopy (rSO2, INVOS\u21225100C Cerebral Oximeter) and with a probe (NEUROVENT-PTO, RAUMEDIC) in the frontal brain cortex (PbO2). Heart biopsies were obtained 20min after the return of spontaneous circulation (ROSC) with an analysis of mitochondrial respiration (OROBOROS Instruments Corp., Innsbruck, Austria), and compared to four control animals without VF and CPR. Brain rSO2 and PbO2 were log transformed and analysed with a mixed linear model and mitochondrial respiration with an analysis of variance. RESULTS: Of the twenty pigs, one had a breach of protocol and was excluded, leaving nine pigs in the 50% group and ten in the 100% group. Return of spontaneous circulation (ROSC) was achieved in six pigs in the 50% group and eight in the 100% group. The rSO2 (p=0.007) was lower with FiO2 50%, but the PbO2 was not (p=0.93). After ROSC there were significant interactions between time and FiO2 regarding both rSO2 (p=0.001) and PbO2 (p=0.004). Compared to the controls, mitochondrial respiration was decreased, with adenosine diphosphate (ADP) levels of 57 (17)pmols-1mg-1 compared to 92 (23)pmols-1mg-1 (p=0.008), but there was no difference between different oxygen fractions (p=0.79). CONCLUSIONS: The use of 50% oxygen during CPR results in lower cerebral oximetry values compared to 100% oxygen but there is no difference in brain tissue oxygen. Cardiac arrest disturbs cardiac mitochondrial respiration, but it is not alleviated with the use of 50% compared to 100% oxygen (Ethical and hospital approvals ESAVI/1077/04.10.07/2016 and HUS/215/2016, \ua77 30.3.2016, Funding Helsinki University and others)

    37th International Symposium on Intensive Care and Emergency Medicine (part 2 of 3)

    No full text
    corecore