823 research outputs found

    Alive and Kicking:Baby Steps in Robotics

    Get PDF

    Precision luminosity measurement at ILC

    Full text link
    In these proceedings a novel approach to deal with the beam-induced effects in luminosity measurement is presented. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainties can be reduced to the permille level independently of a precision with which the beam parameters are known. Specific event selection combined with the corrective methods we introduce, leads to the systematic uncertainty from the beam-induced effects to be at a few permille level in the peak region above the 80% of the nominal centre-of-mass energies at ILC.Comment: Talk presented on behalf of the FCAL Collaboration at the International Workshop on Future Linear Colliders (LCWS13) Tokyo, Japan, 11-15 November 201

    Acquiring moving skills in robots with evolvable morphologies: Recent results and outlook

    Get PDF
    © 2017 ACM. We construct and investigate a strongly embodied evolutionary system, where not only the controllers but also the morphologies undergo evolution in an on-line fashion. In these studies, we have been using various types of robot morphologies and controller architectures in combination with several learning algorithms, e.g. evolutionary algorithms, reinforcement learning, simulated annealing, and HyperNEAT. This hands-on experience provides insights and helps us elaborate on interesting research directions for future development

    Analysing the relative importance of robot brains and bodies

    Get PDF
    The evolution of robots, when applied to both the morphologies and the controllers, is not only a means to obtain high-quality robot designs, but also a process that results in many body-brain-fitness data points. Inspired by this perspective, in this paper we investigate the relative importance of robot bodies and brains for a good fitness. We introduce a method to isolate and quantify the effect of the bodies and brains on the quality of the robots and perform a case study. The method is general in that it is not restricted to evolutionary systems. For the case study, we use a system of modular robots, where the bodies are evolvable and the brains are evolvable and learnable. These case studies validate the usefulness of our method and deliver interesting insights into the interplay between bodies and brains in evolutionary robotics

    Luminosity measurement at ILC

    Full text link
    In this paper we describe a method of luminosity measurement at the future linear collider ILC that estimates and corrects for the impact of the dominant sources of systematic uncertainty originating from the beam-induced effects and the background from physics processes. Based on the relativistic kinematics of the collision frame of the Bhabha process, the beam-beam related uncertainty is reduced to a permille independently of the precision with which the beam parameters are known. With the specific event selection, different from the isolation cuts based on topology of the signal used at LEP, combined with the corrective methods we introduce, the overall systematic uncertainty in the peak region above 80% of the nominal center-of-mass energy meets the physics requirements to be at the few permille level at all ILC energies.Comment: Accepted for publication in JINST (submission JINST_016P_0413

    Measurement of shower development and its Moli\`ere radius with a four-plane LumiCal test set-up

    Get PDF
    A prototype of a luminometer, designed for a future e+e- collider detector, and consisting at present of a four-plane module, was tested in the CERN PS accelerator T9 beam. The objective of this beam test was to demonstrate a multi-plane tungsten/silicon operation, to study the development of the electromagnetic shower and to compare it with MC simulations. The Moli\`ere radius has been determined to be 24.0 +/- 0.6 (stat.) +/- 1.5 (syst.) mm using a parametrization of the shower shape. Very good agreement was found between data and a detailed Geant4 simulation.Comment: Paper published in Eur. Phys. J., includes 25 figures and 3 Table

    Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector

    Get PDF
    Detector-plane prototypes of the very forward calorimetry of a future detector at an e+e- collider have been built and their performance was measured in an electron beam. The detector plane comprises silicon or GaAs pad sensors, dedicated front-end and ADC ASICs, and an FPGA for data concentration. Measurements of the signal-to-noise ratio and the response as a function of the position of the sensor are presented. A deconvolution method is successfully applied, and a comparison of the measured shower shape as a function of the absorber depth with a Monte-Carlo simulation is given.Comment: 25 pages, 32 figures, revised version following comments from referee

    ECFA Detector R&D Panel, Review Report

    Full text link
    Two special calorimeters are foreseen for the instrumentation of the very forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to measure the rate of low angle Bhabha scattering events with a precision better than 103^{-3} at the ILC and 102^{-2} at CLIC, and a low polar-angle calorimeter (BeamCal). The latter will be hit by a large amount of beamstrahlung remnants. The intensity and the spatial shape of these depositions will provide a fast luminosity estimate, as well as determination of beam parameters. The sensors of this calorimeter must be radiation-hard. Both devices will improve the e.m. hermeticity of the detector in the search for new particles. Finely segmented and very compact electromagnetic calorimeters will match these requirements. Due to the high occupancy, fast front-end electronics will be needed. Monte Carlo studies were performed to investigate the impact of beam-beam interactions and physics background processes on the luminosity measurement, and of beamstrahlung on the performance of BeamCal, as well as to optimise the design of both calorimeters. Dedicated sensors, front-end and ADC ASICs have been designed for the ILC and prototypes are available. Prototypes of sensor planes fully assembled with readout electronics have been studied in electron beams.Comment: 61 pages, 51 figure
    corecore