26,841 research outputs found
Thermodynamic analysis of dilute ternary systems. 1. The Ag-Au-Sn system
Heats of solution of silver and gold in dilute silver-gold-tin alloys as function of alloy compositio
Convective instability and transient growth in flow over a backward-facing step
Transient energy growths of two- and three-dimensional optimal linear perturbations to two-dimensional flow in a rectangular backward-facing-step geometry with expansion ratio two are presented. Reynolds numbers based on the step height and peak inflow speed are considered in the range 0–500, which is below the value for the onset of three-dimensional asymptotic instability. As is well known, the flow has a strong local convective instability, and the maximum linear transient energy growth values computed here are of order 80×103 at Re = 500. The critical Reynolds number below which there is no growth over any time interval is determined to be Re = 57.7 in the two-dimensional case. The centroidal location of the energy distribution for maximum transient growth is typically downstream of all the stagnation/reattachment points of the steady base flow. Sub-optimal transient modes are also computed and discussed. A direct study of weakly nonlinear effects demonstrates that nonlinearity is stablizing at Re = 500. The optimal three-dimensional disturbances have spanwise wavelength of order ten step heights. Though they have slightly larger growths than two-dimensional cases, they are broadly similar in character. When the inflow of the full nonlinear system is perturbed with white noise, narrowband random velocity perturbations are observed in the downstream channel at locations corresponding to maximum linear transient growth. The centre frequency of this response matches that computed from the streamwise wavelength and mean advection speed of the predicted optimal disturbance. Linkage between the response of the driven flow and the optimal disturbance is further demonstrated by a partition of response energy into velocity components
Convective instability and transient growth in steady and pulsatile stenotic flows
We show that suitable initial disturbances to steady or long-period pulsatile flows in a straight tube with an axisymmetric 75%-occlusion stenosis can produce very large transient energy growths. The global optimal disturbances to an initially axisymmetric state found by linear analyses are three-dimensional wave packets that produce localized sinuous convective instability in extended shear layers. In pulsatile flow, initial conditions that trigger the largest disturbances are either initiated at, or advect to, the separating shear layer at the stenosis in phase with peak systolic flow. Movies are available with the online version of the paper
A system to geometrically rectify and map airborne scanner imagery and to estimate ground area
A system of computer programs were developed which performs geometric rectification and line-by-line mapping of airborne multispectral scanner data to ground coordinates and estimates ground area. The system requires aircraft attitude and positional information furnished by ancillary aircraft equipment, as well as ground control points. The geometric correction and mapping procedure locates the scan lines, or the pixels on each line, in terms of map grid coordinates. The area estimation procedure gives ground area for each pixel or for a predesignated parcel specified in map grid coordinates. The results of exercising the system with simulated data showed the uncorrected video and corrected imagery and produced area estimates accurate to better than 99.7%
Zenithal bistable device: comparison of modeling and experiment
A comparative modeling and experimental study of the zenithal bistable liquid crystal device is presented. A dynamic Landau de Gennes theory of nematic liquid crystals is solved numerically to model the electric field induced latching of the device and the results are compared with experimental measurements and theoretical approximations. The study gives a clear insight into the latching mechanism dynamics and enables the dependence of the device latching on both material parameters and surface shape to be determined. Analytical approximation highlights a route to optimize material selection in terms of latching voltages and the numerical model, which includes an accurate surface representation, recovers the complex surface shape effects. Predictions of device performance are presented as a function of both surface anchoring strength and surface shape and grating pitch. A measurement of the homeotropic anchoring energy has been undertaken by comparing the voltage response as a function of cell gap; we find the homeotropic anchoring energies can be varied in the range 0.5 to 4 (10-44 J m-2)
Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy
Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple-helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ∼60-80°C for hydrated samples. We report high temperature Raman spectra for freeze-dried cartilage samples that show an increase in laser-excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H2O is retained within the freeze-dried tissue. This is confirmed by thermogravimetric analysis that show 5-7 wt% H2O remaining within freeze-dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re-hydration following recovery indicate that the capacity of the denatured collagen to re-absorb water is reduced. Our results are important for revealing the presence of bound H2O within the collagen component of connective tissue even after freeze-drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure
Evaluation of the ADVIA (R) Centaur (TM) TSH-3 assay
An analytical evaluation of the thyroid stimulating hormone (TSH-3) assay on the Sayer ADVIA(R) Centaur(TM) immunoassay system was performed. General analytical requirements (linearity, resistance to typical interferences, absence of a carry-over effect) were fulfilled and reproducibility was satisfactory. Inter-assay coefficient of variation (CV) of a human serum pool with a concentration of 0.014 mU/l was 22.3%; at concentrations between 0.26 and 83 mU/l CV was below 6%. Method comparison study demonstrated close agreement of TSH results compared to those obtained with the Roche Elecsys(R) 2010 TSH assay (ADVIA Centaur = 1.08 x Elecsys - 0.18 mU/l; r = 0.987; n = 324). Handling and practicability of the ADVIA Centaur system proved to be convenient with a very high sample throughput. We conclude that the ADVIA Centaur TSH-3 assay meets requirements for clinical use
Minimising biases in Full Configuration Interaction Quantum Monte Carlo
We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a
Markov Chain in its present form. We construct the Markov matrix of FCIQMC for
a two determinant system and hence compute the stationary distribution. These
solutions are used to quantify the dependence of the population dynamics on the
parameters defining the Markov chain. Despite the simplicity of a system with
only two determinants, it still reveals a population control bias inherent to
the FCIQMC algorithm. We investigate the effect of simulation parameters on the
population control bias for the neon atom and suggest simulation setups to in
general minimise the bias. We show a reweighting scheme to remove the bias
caused by population control commonly used in Diffusion Monte Carlo [J. Chem.
Phys. 99, 2865 (1993)] is effective and recommend its use as a post processing
step.Comment: Supplementary material available as 'Ancillary Files
- …