110,527 research outputs found

    LaFeAsO1−x_{1-x}Fx_x: A low carrier density superconductor near itinerant magnetism

    Full text link
    Density functional studies of 26K superconducting LaFeAs(O,F) are reported. We find a low carrier density, high density of states, N(EF)N(E_F) and modest phonon frequencies relative to TcT_c. The high N(EF)N(E_F) leads to proximity to itinerant magnetism, with competing ferromagnetic and antiferromagnetic fluctuations and the balance between these controlled by doping level. Thus LaFeAs(O,F) is in a unique class of high TcT_c superconductors: high N(EF)N(E_F) ionic metals near magnetism.Comment: Shortened published form. Typos correcte

    Crystallization of Simple Fluids: Relative Stability of f.c.c. and b.c.c Structures

    Full text link
    A free-energy functional for a crystal that contains both the symmetry conserved and symmetry broken parts of the direct pair correlation function is developed. The free-energy functional is used to investigate the crystallization of fluids interacting via the inverse power potential ; u(r)=ϵ(σ/r)nu(r)=\epsilon {(\sigma/r)}^n. In agreement with simulation results we find that for n=12n=12 the freezing is into close packed f.c.c structure while for soft repulsions (n≤6)(n\leq 6) b.c.c phase is more stable.Comment: 9 pages, 2 figure

    Competitions in layered ruthenates: ferro- vs. antiferromagnetism and triplet vs. singlet pairing

    Full text link
    Ru based perovskites demonstrate an amazing richness in their magnetic properties, including 3D and quasi-2D ferromagnetism, antiferromagnetism, and unconventional superconductivity. Tendency to ferromagnetism, stemming from the unusually large involvement of O in magnetism in ruthenates, leads to ferromagnetic spin fluctuations in Sr2RuO4 and eventually to p-wave superconductivity. A related compound Ca2RuO4 was measured to be antiferromagnetic, suggesting a possibility of antiferromagnetic fluctuations in Sr2RuO4 as well. Here we report first principles calculations that demonstrate that in both compounds the ferro- and antiferromagnetic fluctuations coexist, leading to an actual instability in Ca2RuO4 and to a close competition between p-wave and d-wave superconducting symmetries in Sr2RuO4. The antiferromagnetism in this system appears to be mostly related with the nesting, which is the strongest at Q=(2pi/3,2pi/3,0). Surprisingly, for the Fermiology of Sr2RuO4 the p-wave state wins over the d-wave one everywhere except in close vicinity of the antiferromagnetic instability. The most stable state within the d-wave channel has vanishing order parameter at one out of three Fermi surfaces in Sr2RuO4, while in the p channel its amplitude is comparable at all three of them.Comment: 4 Revtex pages with 4 embedded postscript figure. Some figures are color, but should look OK in B&W as wel

    Density functional study of FeS, FeSe and FeTe: Electronic structure, magnetism, phonons and superconductivity

    Full text link
    We report density functional calculations of the electronic structure, Fermi surface, phonon spectrum, magnetism and electron-phonon coupling for the superconducting phase FeSe, as well as the related compounds FeS and FeTe. We find that the Fermi surface structure of these compounds is very similar to that of the Fe-As based superconductors, with cylindrical electron sections at the zone corner, cylindrical hole surface sections, and depending on the compound, other small hole sections at the zone center. As in the Fe-As based materials, these surfaces are separated by a 2D nesting vector at (Ï€\pi,Ï€\pi). The density of states, nesting and Fermi surface size increase going from FeSe to FeTe. Both FeSe and FeTe show spin density wave ground states, while FeS is close to an instability. In a scenario where superconductivity is mediated by spin fluctuations at the SDW nesting vector, the strongest superconductor in this series would be doped FeTe.Comment: Added note regarding recent experimental observations of superconductivity under pressure. Some additional discussio

    Thermoelectric properties of AgGaTe2_2 and related chalcopyrite structure materials

    Full text link
    We present an analysis of the potential thermoelectric performance of p-type AgGaTe2_{2}, which has already shown a ZTZT of 0.8 with partial optimization, and observe that the same band structure features, such as a mixture of light and heavy bands and isotropic transport, that lead to this good performance are present in certain other ternary chalcopyrite structure semiconductors. We find that optimal performance of AgGaTe2_2 will be found for hole concentrations between 4 ×1019\times 10^{19} and 2 ×1020\times 10^{20}cm−3^{-3} at 900 K, and 2 ×1019\times 10^{19} and 1020^{20} cm−3^{-3} at 700 K, and that certain other chalcopyrite semiconductors might show good thermoelectric performance at similar doping ranges and temperatures if not for higher lattice thermal conductivity

    Investigation of the effects of cobalt ions on epoxy properties

    Get PDF
    The effects of Co(acac)sub x complexes on MY-720 epoxy properties have been investigated. It appears that Co2(+) ions form antibonding or nonbonding orbitals which increase the free volume and also reduce the cohesiveness of the host epoxy. The effects of Co2(+) ions, on the other hand, seem to result in increased Cohesiveness of the epoxy. The experimental values of magnetic moments of both types of ions in MY-720 suggest that the orbital momentum contributions of the (3d) electrons are partially conserved, though the effect is more pronounced for Co2(+) ions. The coordination environment of the cobalt ions in the host epoxy does not appear to be uniquely defined. These results indicate that the effects of metal ions on resin properties cannot be easily predicted on the basis of ligand field theory argument alone. Complex interactions between metal ions and host epoxy molecular structure suggest the desirability of parallel experimental investigations of electronic, magnetic, and mechanical properties of metal ion-containing epoxy samples for comparison with theory

    Electronic Structure and Thermoelectric Prospects of Phosphide Skutterudites

    Full text link
    The prospects for high thermoelectric performance in phosphide skutterudites are investigated based on first principles calculations. We find that stoichiometric CoP_3 differs from the corresponding arsenide and antimonide in that it is metallic. As such the band structure must be modified if high thermopowers are to be achieved. In analogy to the antimonides it is expected that this may be done by filling with La. Calculations for LaFe_4P_12 show that a gap can in fact be opened by La filling, but that the valence band is too light to yield reasonable p-type thermopowers at appropriate carrier densities; n-type La filled material may be more favorable.Comment: 3 pages, 3 figures, 1 tabl

    A Tight-Binding Investigation of the NaxCoO2 Fermi Surface

    Full text link
    We perform an orthogonal basis tight binding fit to an LAPW calculation of paramagnetic Nax_xCoO2_2 for several dopings. The optimal position of the apical oxygen at each doping is resolved, revealing a non-trivial dependence of the band structure and Fermi surface on oxygen height. We find that the small eg′_{g'} hole pockets are preserved throughout all investigated dopings and discuss some possible reasons for the lack of experimental evidence for these Fermi sheets
    • …
    corecore