995 research outputs found

    CHARACTERISTICS AND STABILIZATION OF DNAASE-SENSITIVE PROTEIN SYNTHESIS IN E. COLI EXTRACTS

    Full text link

    Time reversal in thermoacoustic tomography - an error estimate

    Full text link
    The time reversal method in thermoacoustic tomography is used for approximating the initial pressure inside a biological object using measurements of the pressure wave made on a surface surrounding the object. This article presents error estimates for the time reversal method in the cases of variable, non-trapping sound speeds.Comment: 16 pages, 6 figures, expanded "Remarks and Conclusions" section, added one figure, added reference

    Global embedding of the Kerr black hole event horizon into hyperbolic 3-space

    Full text link
    An explicit global and unique isometric embedding into hyperbolic 3-space, H^3, of an axi-symmetric 2-surface with Gaussian curvature bounded below is given. In particular, this allows the embedding into H^3 of surfaces of revolution having negative, but finite, Gaussian curvature at smooth fixed points of the U(1) isometry. As an example, we exhibit the global embedding of the Kerr-Newman event horizon into H^3, for arbitrary values of the angular momentum. For this example, considering a quotient of H^3 by the Picard group, we show that the hyperbolic embedding fits in a fundamental domain of the group up to a slightly larger value of the angular momentum than the limit for which a global embedding into Euclidean 3-space is possible. An embedding of the double-Kerr event horizon is also presented, as an example of an embedding which cannot be made global.Comment: 16 pages, 13 figure

    Differential Geometry of Quantum States, Observables and Evolution

    Full text link
    The geometrical description of Quantum Mechanics is reviewed and proposed as an alternative picture to the standard ones. The basic notions of observables, states, evolution and composition of systems are analised from this perspective, the relevant geometrical structures and their associated algebraic properties are highlighted, and the Qubit example is thoroughly discussed.Comment: 20 pages, comments are welcome

    Constructing solutions to the Bj\"orling problem for isothermic surfaces by structure preserving discretization

    Get PDF
    In this article, we study an analog of the Bj\"orling problem for isothermic surfaces (that are more general than minimal surfaces): given a real analytic curve γ\gamma in R3{\mathbb R}^3, and two analytic non-vanishing orthogonal vector fields vv and ww along γ\gamma, find an isothermic surface that is tangent to γ\gamma and that has vv and ww as principal directions of curvature. We prove that solutions to that problem can be obtained by constructing a family of discrete isothermic surfaces (in the sense of Bobenko and Pinkall) from data that is sampled along γ\gamma, and passing to the limit of vanishing mesh size. The proof relies on a rephrasing of the Gauss-Codazzi-system as analytic Cauchy problem and an in-depth-analysis of its discretization which is induced from the geometry of discrete isothermic surfaces. The discrete-to-continuous limit is carried out for the Christoffel and the Darboux transformations as well.Comment: 29 pages, some figure

    Breakdown of smoothness for the Muskat problem

    Get PDF
    In this paper we show that there exist analytic initial data in the stable regime for the Muskat problem such that the solution turns to the unstable regime and later breaks down i.e. no longer belongs to C4C^4.Comment: 93 pages, 10 figures (6 added

    The Transition to a Giant Vortex Phase in a Fast Rotating Bose-Einstein Condensate

    Get PDF
    We study the Gross-Pitaevskii (GP) energy functional for a fast rotating Bose-Einstein condensate on the unit disc in two dimensions. Writing the coupling parameter as 1 / \eps^2 we consider the asymptotic regime \eps \to 0 with the angular velocity Ω\Omega proportional to (\eps^2|\log\eps|)^{-1} . We prove that if \Omega = \Omega_0 (\eps^2|\log\eps|)^{-1} and Ω0>2(3π)1 \Omega_0 > 2(3\pi)^{-1} then a minimizer of the GP energy functional has no zeros in an annulus at the boundary of the disc that contains the bulk of the mass. The vorticity resides in a complementary `hole' around the center where the density is vanishingly small. Moreover, we prove a lower bound to the ground state energy that matches, up to small errors, the upper bound obtained from an optimal giant vortex trial function, and also that the winding number of a GP minimizer around the disc is in accord with the phase of this trial function.Comment: 52 pages, PDFLaTex. Minor corrections, sign convention modified. To be published in Commun. Math. Phy

    Absorbing boundary conditions for the Westervelt equation

    Full text link
    The focus of this work is on the construction of a family of nonlinear absorbing boundary conditions for the Westervelt equation in one and two space dimensions. The principal ingredient used in the design of such conditions is pseudo-differential calculus. This approach enables to develop high order boundary conditions in a consistent way which are typically more accurate than their low order analogs. Under the hypothesis of small initial data, we establish local well-posedness for the Westervelt equation with the absorbing boundary conditions. The performed numerical experiments illustrate the efficiency of the proposed boundary conditions for different regimes of wave propagation

    Local and Global Analytic Solutions for a Class of Characteristic Problems of the Einstein Vacuum Equations in the "Double Null Foliation Gauge"

    Full text link
    The main goal of this work consists in showing that the analytic solutions for a class of characteristic problems for the Einstein vacuum equations have an existence region larger than the one provided by the Cauchy-Kowalevski theorem due to the intrinsic hyperbolicity of the Einstein equations. To prove this result we first describe a geometric way of writing the vacuum Einstein equations for the characteristic problems we are considering, in a gauge characterized by the introduction of a double null cone foliation of the spacetime. Then we prove that the existence region for the analytic solutions can be extended to a larger region which depends only on the validity of the apriori estimates for the Weyl equations, associated to the "Bel-Robinson norms". In particular if the initial data are sufficiently small we show that the analytic solution is global. Before showing how to extend the existence region we describe the same result in the case of the Burger equation, which, even if much simpler, nevertheless requires analogous logical steps required for the general proof. Due to length of this work, in this paper we mainly concentrate on the definition of the gauge we use and on writing in a "geometric" way the Einstein equations, then we show how the Cauchy-Kowalevski theorem is adapted to the characteristic problem for the Einstein equations and we describe how the existence region can be extended in the case of the Burger equation. Finally we describe the structure of the extension proof in the case of the Einstein equations. The technical parts of this last result is the content of a second paper.Comment: 68 page
    corecore