7,909 research outputs found

    "Just So" Neutrino Oscillations Are Back

    Full text link
    Recent evidence for oscillations of atmospheric neutrinos at Super-Kamiokande suggest, in the simplest see-saw interpretation, neutrino masses such that `just so' vacuum oscillations can explain the solar neutrino deficit. Super-K solar neutrino data provide preliminary support for this interpretation. We describe how the just-so signal---an energy dependent seasonal variation of the event rate, might be detected within the coming years and provide general arguments constraining the sign of the variation. The expected variation at radiochemical detectors may be below present sensitivity, but a significant modulation in the 7^7Be signal could shed light on the physics of the solar core---including a direct measure of the solar core temperature.Comment: 4 pages, revtex, 4 ps figs: new refs added, and Super-K energy resolution function incorporate

    Next-to-Leading Order NMSSM Decays with CP-odd Higgs Bosons and Stops

    Get PDF
    We compute the full next-to-leading order supersymmetric (SUSY) electroweak (EW) and SUSY-QCD corrections to the decays of CP-odd NMSSM Higgs bosons into stop pairs. In our numerical analysis we also present the decay of the heavier stop into the lighter stop and an NMSSM CP-odd Higgs boson. Both the EW and the SUSY-QCD corrections are found to be significant and have to be taken into account for a proper prediction of the decay widths.Comment: 28 pages, 10 figure

    Observation of Cosmic Acceleration and Determining the Fate of the Universe

    Get PDF
    Current observations of Type Ia supernovae provide evidence for cosmic acceleration out to a redshift of z \lsim 1, leading to the possibility that the universe is entering an inflationary epoch. However, inflation can take place only if vacuum-energy (or other sufficiently slowly redshifting source of energy density) dominates the energy density of a region of physical radius 1/H. We argue that for the best-fit values of ΩΛ\Omega_\Lambda and Ωm\Omega_m inferred from the supernovae data, one must confirm cosmic acceleration out to at least z≃1.8z \simeq 1.8 to infer that the universe is inflating.Comment: 4 pages;important changes in conclusion; published in Phys. Rev. Let

    Old Galaxies at High Redshift and the Cosmological Constant

    Get PDF
    In a recent striking discovery, Dunlop {\bf \it et al} observed a galaxy at redshift z=1.55 with an estimated age of 3.5 Gyr. This is incompatible with age estimates for a flat matter dominated universe unless the Hubble constant is less than 45kms−1Mpc−1 45 kms^{-1}Mpc^{-1}. While both an open universe, and a universe with a cosmological constant alleviate this problem, I argue here that this result favors a non-zero cosmological constant, especially when considered in light of other cosmological constraints. In the first place, for the favored range of matter densities, this constraint is more stringent than the globular cluster age constraint, which already favors a non-zero cosmological constant. Moreover, the age-redshift relation for redshifts of order unity implies that the ratio between the age associated with redshift 1.55 and the present age is also generally larger for a cosmological constant dominated universe than for an open universe. In addition, structure formation is generally suppressed in low density cosmologies, arguing against early galaxy formation. The additional constraints imposed by the new observation on the parameter space of hh vs Ωmatter\Omega_{matter} (where H=100hkms−1Mpc−1H= 100 h kms^{-1}Mpc^{-1}) are derived for both cosmologies. For a cosmological constant dominated universe this constraint is consistent with the range allowed by other cosmological constraints, which also favor a non-zero value.Comment: latex, 10 pages, including two embedded postscript figure
    • …
    corecore