326 research outputs found

    The S0_0(0) structure in highly compressed hydrogen and the orientational transition

    Full text link
    A calculation of the rotational S0_0(0) frequencies in high pressure solid para-hydrogen is performed. Convergence of the perturbative series at high density is demonstrated by the calculation of second and third order terms. The results of the theory are compared with the available experimental data to derive the density behaviour of structural parameters. In particular, a strong increase of the value of the lattice constant ratio c/ac/a and of the internuclear distance is determined. Also a decrease of the anisotropic intermolecular potential is observed which is attributed to charge transfer effects. The structural parameters determined at the phase transition may be used to calculate quantum properties of the rotationally ordered phase.Comment: accepted Europhysics Letter

    Nanostratification of optical excitation in self-interacting 1D arrays

    Full text link
    The major assumption of the Lorentz-Lorenz theory about uniformity of local fields and atomic polarization in dense material does not hold in finite groups of atoms, as we reported earlier [A. E. Kaplan and S. N. Volkov, Phys. Rev. Lett., v. 101, 133902 (2008)]. The uniformity is broken at sub-wavelength scale, where the system may exhibit strong stratification of local field and dipole polarization, with the strata period being much shorter than the incident wavelength. In this paper, we further develop and advance that theory for the most fundamental case of one-dimensional arrays, and study nanoscale excitation of so called "locsitons" and their standing waves (strata) that result in size-related resonances and related large field enhancement in finite arrays of atoms. The locsitons may have a whole spectrum of spatial frequencies, ranging from long waves, to an extent reminiscent of ferromagnetic domains, -- to super-short waves, with neighboring atoms alternating their polarizations, which are reminiscent of antiferromagnetic spin patterns. Of great interest is the new kind of "hybrid" modes of excitation, greatly departing from any magnetic analogies. We also study differences between Ising-like near-neighbor approximation and the case where each atom interacts with all other atoms in the array. We find an infinite number of "exponential eigenmodes" in the lossless system in the latter case. At certain "magic" numbers of atoms in the array, the system may exhibit self-induced (but linear in the field) cancellation of resonant local-field suppression. We also studied nonlinear modes of locsitons and found optical bistability and hysteresis in an infinite array for the simplest modes.Comment: 39 pages, 5 figures; v2: Added the Conclusions section, corrected a typo in Eq. (5.3), corrected minor stylistic and grammatical imperfection

    First-Principle Homogenization Theory for Periodic Metamaterials

    Full text link
    We derive from first principles an accurate homogenized description of periodic metamaterials made of magnetodielectric inclusions, highlighting and overcoming relevant limitations of standard homogenization methods. We obtain closed-form expressions for the effective constitutive parameters, pointing out the relevance of inherent spatial dispersion effects, present even in the long-wavelength limit. Our results clarify the limitations of quasi-static homogenization models, restore the physical meaning of homogenized metamaterial parameters and outline the reasons behind magnetoelectric coupling effects that may arise also in the case of center-symmetric inclusions.Comment: 58 pages, 10 figures Phys. Rev. B, in press (2011

    Nuclear Magnetic Relaxation in the Ferrimagnetic Chain Compound NiCu(C_7_H_6_N_2_O_6_)(H_2_O)_3_2H_2_O: Three-Magnon Scattering?

    Full text link
    Recent proton spin-lattice relaxation-time (T_1_) measurements on the ferrimagnetic chain compound NiCu(C_7_H_6_N_2_O_6_)(H_2_O)_3_2H_2_O are explained by an elaborately modified spin-wave theory. We give a strong evidence of the major contribution to 1/T_1_ being made by the three-magnon scattering rather than the Raman one.Comment: J. Phys.: Condens. Matter 16, No. 49, 9023 (2004

    Quantum and Classical Orientational Ordering in Solid Hydrogen

    Full text link
    We present a unified view of orientational ordering in phases I, II, and III of solid hydrogen. Phases II and III are orientationally ordered, while the ordering objects in phase II are angular momenta of rotating molecules, and in phase III the molecules themselves. This concept provides quantitative explanation of the vibron softening, libron and roton spectra, and increase of the IR vibron oscillator strength in phase III. The temperature dependence of the effective charge parallels the frequency shifts of the IR and Raman vibrons. All three quantities are linear in the order parameter.Comment: Replaced with the final text, accepted for publication in PRL. 1 Fig. added. Misc. text revision

    Polarization and Strong Infra-Red Activity in Compressed Solid Hydrogen

    Full text link
    Under a pressure of ~150 GPa solid molecular hydrogen undergoes a phase transition accompanied by a dramatic rise in infra-red absorption in the vibron frequency range. We use the Berry's phase approach to calculate the electric polarization in several candidate structures finding large, anisotropic dynamic charges and strongly IR-active vibron modes. The polarization is shown to be greatly affected by the overlap between the molecules in the crystal, so that the commonly used Clausius-Mossotti description in terms of polarizable, non-overlapping molecular charge densities is inadequate already at low pressures and even more so for the compressed solid.Comment: To appear in Phys. Rev. Let

    Higher order glass-transition singularities in colloidal systems with attractive interactions

    Full text link
    The transition from a liquid to a glass in colloidal suspensions of particles interacting through a hard core plus an attractive square-well potential is studied within the mode-coupling-theory framework. When the width of the attractive potential is much shorter than the hard-core diameter, a reentrant behavior of the liquid-glass line, and a glass-glass-transition line are found in the temperature-density plane of the model. For small well-width values, the glass-glass-transition line terminates in a third order bifurcation point, i.e. in a A_3 (cusp) singularity. On increasing the square-well width, the glass-glass line disappears, giving rise to a fourth order A_4 (swallow-tail) singularity at a critical well width. Close to the A_3 and A_4 singularities the decay of the density correlators shows stretching of huge dynamical windows, in particular logarithmic time dependence.Comment: 19 pages, 12 figures, Phys. Rev. E, in prin

    Determinants of Symptomatic Intracranial Hemorrhage After Endovascular Stroke Treatment:A Retrospective Cohort Study

    Get PDF
    Background: Symptomatic intracranial hemorrhage (sICH) is a serious complication after endovascular treatment for ischemic stroke. We aimed to identify determinants of its occurrence and location. Methods: We retrospectively analyzed data from the Dutch MR CLEAN trial (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands) and MR CLEAN registry. We included adult patients with a large vessel occlusion in the anterior circulation who underwent endovascular treatment within 6.5 hours of stroke onset. We used univariable and multivariable logistic regression analyses to identify determinants of overall sICH occurrence, sICH within infarcted brain tissue, and sICH outside infarcted brain tissue. Results: SICH occurred in 203 (6%) of 3313 included patients and was located within infarcted brain tissue in 50 (25%), outside infarcted brain tissue in 23 (11%), and both within and outside infarcted brain tissue in 116 (57%) patients. In 14 patients (7%), data on location were missing. Prior antiplatelet use, baseline systolic blood pressure, baseline plasma glucose levels, post-endovascular treatment modified treatment in cerebral ischemia score, and duration of procedure were associated with all outcome parameters. In addition, determinants of sICH within infarcted brain tissue included history of myocardial infarction (adjusted odds ratio, 1.65 [95% CI, 1.06-2.56]) and poor collateral score (adjusted odds ratio, 1.42 [95% CI, 1.02-1.95]), whereas determinants of sICH outside infarcted brain tissue included level of occlusion on computed tomography angiography (internal carotid artery or internal carotid artery terminus compared with M1: adjusted odds ratio, 1.79 [95% CI, 1.16-2.78]). Conclusions: Several factors, some potentially modifiable, are associated with sICH occurrence. Further studies should investigate whether modification of baseline systolic blood pressure or plasma glucose level could reduce the risk of sICH. In addition, determinants differ per location of sICH, supporting the hypothesis of varying underlying mechanisms. Registration: URL: https://www.isrctn.com/; Unique identifier: ISRCTN10888758

    Charge degree of freedom and single-spin fluid model in YBa_2Cu_4O_8

    Full text link
    We present a 17O nuclear magnetic resonance study in the stoichiometric superconductor YBa_2Cu_4O_8. A double irradiation method enables us to show that, below around 180 K, the spin-lattice relaxation rate of plane oxygen is not only driven by magnetic, but also significantly by quadrupolar fluctuations, i.e. low-frequency charge fluctuations. In the superconducting state, on lowering the temperature, the quadrupolar relaxation diminishes faster than the magnetic one. These findings show that, with the opening of the pseudo spin gap, a charge degree of freedom of mainly oxygen character is present in the electronic low-energy excitation spectrum.Comment: 4 pages, 3 figures, REVTE
    • …
    corecore