4,690 research outputs found
Isotropic subbundles of
We define integrable, big-isotropic structures on a manifold as
subbundles that are isotropic with respect to the
natural, neutral metric (pairing) of and are closed by
Courant brackets (this also implies that ). We give the interpretation of such a structure by objects of
, we discuss the local geometry of the structure and we give a reduction
theorem.Comment: LaTex, 37 pages, minimization of the defining condition
Convergent expansions for properties of the Heisenberg model for CaVO
We have carried out a wide range of calculations for the Heisenberg
model with nearest- and second-neighbor interactions on a two-dimensional
lattice which describes the geometry of the vanadium ions in the spin-gap
system CaVO. The methods used were convergent high-order perturbation
expansions (``Ising'' and ``Plaquette'' expansions at , as well as
high-temperature expansions) for quantities such as the uniform susceptibility,
sublattice magnetization, and triplet elementary excitation spectrum.
Comparison with the data for CaVO indicates that its magnetic
properties are well described by nearest-neighbor exchange of about 200K in
conjunction with second-neighbor exchange of about 100K.Comment: Uses REVTEX macros. Four pages in two-column format, five postscript
figures. Files packaged using uufile
Energetic Consistency and Momentum Conservation in the Gyrokinetic Description of Tokamak Plasmas
Gyrokinetic field theory is addressed in the context of a general
Hamiltonian. The background magnetic geometry is static and axisymmetric, and
all dependence of the Lagrangian upon dynamical variables is in the Hamiltonian
or in free field terms. Equations for the fields are given by functional
derivatives. The symmetry through the Hamiltonian with time and toroidal angle
invariance of the geometry lead to energy and toroidal momentum conservation.
In various levels of ordering against fluctuation amplitude, energetic
consistency is exact. The role of this in underpinning of conservation laws is
emphasised. Local transport equations for the vorticity, toroidal momentum, and
energy are derived. In particular, the momentum equation is shown for any form
of Hamiltonian to be well behaved and to relax to its magnetohydrodynamic (MHD)
form when long wavelength approximations are taken in the Hamiltonian. Several
currently used forms, those which form the basis of most global simulations,
are shown to be well defined within the gyrokinetic field theory and energetic
consistency.Comment: RevTeX 4, 47 pages, no figures, revised version updated following
referee comments (discussion more strictly correct/consistent, 4 references
added, results unchanged as they depend on consistency of the theory),
resubmitted to Physics of Plasma
Spin-S bilayer Heisenberg models: Mean-field arguments and numerical calculations
Spin-S bilayer Heisenberg models (nearest-neighbor square lattice
antiferromagnets in each layer, with antiferromagnetic interlayer couplings)
are treated using dimer mean-field theory for general S and high-order
expansions about the dimer limit for S=1, 3/2,...,4. We suggest that the
transition between the dimer phase at weak intraplane coupling and the Neel
phase at strong intraplane coupling is continuous for all S, contrary to a
recent suggestion based on Schwinger boson mean-field theory. We also present
results for S=1 layers based on expansions about the Ising limit: In every
respect the S=1 bilayers appear to behave like S=1/2 bilayers, further
supporting our picture for the nature of the order-disorder phase transition.Comment: 6 pages, Revtex 3.0, 8 figures (not embedded in text
Tree-level scattering amplitudes from the amplituhedron
7 pages, 2 figures, to be published in the Journal of Physics: Conference Series. Proceedings for the "7th Young Researcher Meeting", Torino, 2016A central problem in quantum field theory is the computation of scattering amplitudes. However, traditional methods are impractical to calculate high order phenomenologically relevant observables. Building on a few decades of astonishing progress in developing non-standard computational techniques, it has been recently conjectured that amplitudes in planar N=4 super Yang-Mills are given by the volume of the (dual) amplituhedron. After providing an introduction to the subject at tree-level, we discuss a special class of differential equations obeyed by the corresponding volume forms. In particular, we show how they fix completely the amplituhedron volume for next-to-maximally helicity violating scattering amplitudes.Peer reviewe
Some comments on the divergence of perturbation series in Quantum Eletrodynamics
It has been argued by Dyson that the perturbation series in coupling constant
in QED can not be convergent. We find that similiar albeit slightly different
arguments lead to the divergence of the series of expansion in QED.Comment: Final Version, To appear in Modern Physics Letters
Dynamical Structure Factors for Dimerized Spin Systems
We discuss the transition strength between the disordered ground state and
the basic low-lying triplet excitation for interacting dimer materials by
presenting theoretical calculations and series expansions as well as inelastic
neutron scattering results for the material KCuCl_3. We describe in detail the
features resulting from the presence of two differently oriented dimers per
unit cell and show how energies and spectral weights of the resulting two modes
are related to each other. We present results from the perturbation expansion
in the interdimer interaction strength and thus demonstrate that the wave
vector dependence of the simple dimer approximation is modified in higher
orders. Explicit results are given in 10th order for dimers coupled in 1D, and
in 2nd order for dimers coupled in 3D with application to KCuCl_3 and TlCuCl_3.Comment: 17 pages, 6 figures, part 2 is based on cond-mat/021133
- …