17,676 research outputs found

    An ultra-low frequency electromagnetic wave force mechanism for the ionosphere

    Get PDF
    Ultra-low frequency electromagnetic wave force mechanism for ionospheric anomalie

    Darwin-Lagrangian Analysis for the Interaction of a Point Charge and a Magnet: Considerations Related to the Controversy Regarding the Aharonov-Bohm and Aharonov-Casher Phase Shifts

    Full text link
    The classical electromagnetic interaction of a point charge and a magnet is discussed by first calculating the interaction of point charge with a simple model magnetic moment and then suggesting a multiparticle limit. The Darwin Lagrangian is used to analyze the electromagnetic behavior of the model magnetic moment (composed of two oppositely charged particles of different mass in an initially circular orbit) interacting with a passing point charge. The changing mangetic moment is found to put a force back on a passing charge; this force is of order 1/c^2 and depends upon the magnitude of the magnetic moment. It is suggested that in the limit of a multiparticle magnetic toroid, the electric fields of the passing charge are screened out of the body of the magnet while the magnetic fields penetrate into the magnet. This is consistent with our understanding of the penetration of electromagnetic velocity fields into ohmic conductors. Conservation laws are discussed. The work corresponds to a classical electromagnetic analysis of the interaction which is basic to understanding the controversy over the Aharonov-Bohm and Aharonov-Casher phase shifts and represents a refutation of the suggestions of Aharonov, Pearle, and Vaidman.Comment: 33 page

    Derivation of the Blackbody Radiation Spectrum from a Natural Maximum-Entropy Principle Involving Casimir Energies and Zero-Point Radiation

    Get PDF
    By numerical calculation, the Planck spectrum with zero-point radiation is shown to satisfy a natural maximum-entropy principle whereas alternative choices of spectra do not. Specifically, if we consider a set of conducting-walled boxes, each with a partition placed at a different location in the box, so that across the collection of boxes the partitions are uniformly spaced across the volume, then the Planck spectrum correspond to that spectrum of random radiation (having constant energy kT per normal mode at low frequencies and zero-point energy (1/2)hw per normal mode at high frequencies) which gives maximum uniformity across the collection of boxes for the radiation energy per box. The analysis involves Casimir energies and zero-point radiation which do not usually appear in thermodynamic analyses. For simplicity, the analysis is presented for waves in one space dimension.Comment: 11 page

    P4-compatible High-level Synthesis of Low Latency 100 Gb/s Streaming Packet Parsers in FPGAs

    Full text link
    Packet parsing is a key step in SDN-aware devices. Packet parsers in SDN networks need to be both reconfigurable and fast, to support the evolving network protocols and the increasing multi-gigabit data rates. The combination of packet processing languages with FPGAs seems to be the perfect match for these requirements. In this work, we develop an open-source FPGA-based configurable architecture for arbitrary packet parsing to be used in SDN networks. We generate low latency and high-speed streaming packet parsers directly from a packet processing program. Our architecture is pipelined and entirely modeled using templated C++ classes. The pipeline layout is derived from a parser graph that corresponds a P4 code after a series of graph transformation rounds. The RTL code is generated from the C++ description using Xilinx Vivado HLS and synthesized with Xilinx Vivado. Our architecture achieves 100 Gb/s data rate in a Xilinx Virtex-7 FPGA while reducing the latency by 45% and the LUT usage by 40% compared to the state-of-the-art.Comment: Accepted for publication at the 26th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays February 25 - 27, 2018 Monterey Marriott Hotel, Monterey, California, 7 pages, 7 figures, 1 tabl

    Gravitational Chern-Simons and the adiabatic limit

    Full text link
    We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasi-regular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed in a paper of Guralnik, Iorio, Jackiw and Pi (2003), although not in the adiabatic context.Comment: 17 page

    Hydrodynamic reductions of the heavenly equation

    Full text link
    We demonstrate that Pleba\'nski's first heavenly equation decouples in infinitely many ways into a triple of commuting (1+1)-dimensional systems of hydrodynamic type which satisfy the Egorov property. Solving these systems by the generalized hodograph method, one can construct exact solutions of the heavenly equation parametrized by arbitrary functions of a single variable. We discuss explicit examples of hydrodynamic reductions associated with the equations of one-dimensional nonlinear elasticity, linearly degenerate systems and the equations of associativity.Comment: 14 page

    Ordering kinetics of stripe patterns

    Full text link
    We study domain coarsening of two dimensional stripe patterns by numerically solving the Swift-Hohenberg model of Rayleigh-Benard convection. Near the bifurcation threshold, the evolution of disordered configurations is dominated by grain boundary motion through a background of largely immobile curved stripes. A numerical study of the distribution of local stripe curvatures, of the structure factor of the order parameter, and a finite size scaling analysis of the grain boundary perimeter, suggest that the linear scale of the structure grows as a power law of time with a craracteristic exponent z=3. We interpret theoretically the exponent z=3 from the law of grain boundary motion.Comment: 4 pages, 4 figure

    On the supersymmetries of anti de Sitter vacua

    Full text link
    We present details of a geometric method to associate a Lie superalgebra with a large class of bosonic supergravity vacua of the type AdS x X, corresponding to elementary branes in M-theory and type II string theory.Comment: 16 page
    • …
    corecore