1,182 research outputs found
Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development
The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans
Evidence for an evolutionarily conserved interaction between cell wall biosynthesis and flowering in maize and sorghum
BACKGROUND: Factors that affect flowering vary among different plant species, and in the grasses in particular the exact mechanism behind this transition is not fully understood. The brown midrib (bm) mutants of maize (Zea mays L.), which have altered cell wall composition, have different flowering dynamics compared to their wild-type counterparts. This is indicative of a link between cell wall biogenesis and flowering. In order to test whether this relationship also exists in other grasses, the flowering dynamics in sorghum (Sorghum bicolor (L.) Moench) were investigated. Sorghum is evolutionarily closely related to maize, and a set of brown midrib (bmr) mutants similar to the maize bm mutants is available, making sorghum a suitable choice for study in this context. RESULTS: We compared the flowering time (time to half-bloom) of several different bmr sorghum lines and their wild-type counterparts. This revealed that the relationship between cell wall composition and flowering was conserved in sorghum. Specifically, the mutant bmr7 flowered significantly earlier than the corresponding wild-type control, whereas the mutants bmr2, bmr4, bmr6, bmr12, and bmr19 flowered later than their wild-type controls. CONCLUSION: The change in flowering dynamics in several of the brown midrib sorghum lines provides evidence for an evolutionarily conserved mechanism that links cell wall biosynthesis to flowering dynamics. The availability of the sorghum bmr mutants expands the germplasm available to investigate this relationship in further detail
Nonequilibrium phase transition in a model for social influence
We present extensive numerical simulations of the Axelrod's model for social
influence, aimed at understanding the formation of cultural domains. This is a
nonequilibrium model with short range interactions and a remarkably rich
dynamical behavior. We study the phase diagram of the model and uncover a
nonequilibrium phase transition separating an ordered (culturally polarized)
phase from a disordered (culturally fragmented) one. The nature of the phase
transition can be continuous or discontinuous depending on the model
parameters. At the transition, the size of cultural regions is power-law
distributed.Comment: 5 pages, 4 figure
How to Choose a Champion
League competition is investigated using random processes and scaling
techniques. In our model, a weak team can upset a strong team with a fixed
probability. Teams play an equal number of head-to-head matches and the team
with the largest number of wins is declared to be the champion. The total
number of games needed for the best team to win the championship with high
certainty, T, grows as the cube of the number of teams, N, i.e., T ~ N^3. This
number can be substantially reduced using preliminary rounds where teams play a
small number of games and subsequently, only the top teams advance to the next
round. When there are k rounds, the total number of games needed for the best
team to emerge as champion, T_k, scales as follows, T_k ~N^(\gamma_k) with
gamma_k=1/[1-(2/3)^(k+1)]. For example, gamma_k=9/5,27/19,81/65 for k=1,2,3.
These results suggest an algorithm for how to infer the best team using a
schedule that is linear in N. We conclude that league format is an ineffective
method of determining the best team, and that sequential elimination from the
bottom up is fair and efficient.Comment: 6 pages, 3 figure
Field dependent thermodynamics and Quantum Critical Phenomena in the dimerized spin system Cu2(C5H12N2)2Cl4
Experimental data for the uniform susceptibility, magnetization and specific
heat for the material Cu2(C5H12N2)2Cl4 (abbreviated CuHpCl) as a function of
temperature and external field are compared with those of three different
dimerized spin models: alternating spin-chains, spin-ladders and the bilayer
Heisenberg model. It is shown that because this material consists of weakly
coupled spin-dimers, much of the data is insensitive to how the dimers are
coupled together and what the effective dimensionality of the system is. When
such a system is tuned to the quantum critical point by application of a field,
the dimensionality shows up in the power-law dependences of thermodynamic
quantities on temperature. We discuss the temperature window for such a quantum
critical behavior in CuHpCl.Comment: Revtex, 5 pages, 4 figures (postscript
Spinons in a Crossed-Chains Model of a 2D Spin Liquid
Using Random Phase Approximation, we show that a crossed-chains model of a
spin-1/2 Heisenberg spins, with frustrated interchain couplings, has a
non-dimerized spin-liquid ground state in 2D, with deconfined spinons as the
elementary excitations. The results are confirmed by a bosonization study,
which shows that the system is an example of a `sliding Luttinger liquid'. In
an external field, the system develops an incommensurate field-induced long
range order with a finite transition temperature.Comment: 4 pages, 3 figures; added references; scaling analysis, preserving
spin rotational invariance, is extended to finite temperatur
“An ethnographic seduction”: how qualitative research and Agent-based models can benefit each other
We provide a general analytical framework for empirically informed agent-based simulations. This methodology provides present-day agent-based models with a sound and proper insight as to the behavior of social agents — an insight that statistical data often fall short of providing at least at a micro level and for hidden and sensitive populations. In the other direction, simulations can provide qualitative researchers in sociology, anthropology and other fields with valuable tools for: (a) testing the consistency and pushing the boundaries, of specific theoretical frameworks; (b) replicating and generalizing results; (c) providing a platform for cross-disciplinary validation of results
Quantifying trading behavior in financial markets using Google Trends
Crises in financial markets affect humans worldwide. Detailed market data on trading decisions reflect some of the complex human behavior that has led to these crises. We suggest that massive new data sources resulting from human interaction with the Internet may offer a new perspective on the behavior of market participants in periods of large market movements. By analyzing changes in Google query volumes for search terms related to finance, we find patterns that may be interpreted as “early warning signs” of stock market moves. Our results illustrate the potential that combining extensive behavioral data sets offers for a better understanding of collective human behavior
Dynamical Properties of One-Dimensional Multicomponent Quantum Liquids in Metallic Phase
We investigate low-energy dynamical properties of one-dimensional
multicomponent quantum liquids with the short-range interaction as well as the
-type long-range interaction. By calculating the single-particle spectrum
and the dynamical spin susceptibility by means of the bosonization method, we
discuss how the orbital degeneracy and the band splitting affect the dynamical
response functions. The effect of the long-range interaction is also addressed.
Although the long-range interaction suppresses charge fluctuations, it
effectively enhances spin fluctuations via the formation of the Wigner crystal.Comment: 17 pages, 8 figure
Phase diagram and symmetry breaking of SU(4) spin-orbital chain in a generalized external field
The ground state phases of a one-dimensional SU(4) spin-orbital Hamiltonian
in a generalized external field are studied on the basis of Bethe-ansatz
solution. Introducing three Land\'e factors for spin, orbital and their
products in the SU(4) Zeeman term, we discuss systematically the various
symmetry breaking. The magnetization versus external field are obtained by
solving Bethe-ansatz equations numerically. The phase diagrams corresponding to
distinct residual symmetries are given by means of both numerical and
analytical methods.Comment: Revtex4, 16 pages, 7 figure
- …