32 research outputs found

    Advanced prevention against icing on high voltage power lines

    Get PDF
    Historical meteorological data indicates, that our weather is becoming more and more extreme. For the electrical utility operators (Distribution System Operators - DSOs and Transmission System Operators - TSOs), these changes arise in new operation challenges that need to be addressed. For example, frequent icing phenomenon affects all the components of the power line by a significant mechanical overload: it endangers the conductors, the insulators and the towers, as well. The result is often fatal and beside serious failures, it effects on operators’ decisions. These not only endanger the reliability of electrical grids by the loss of a power line for weeks or even months, but in general, the safety in the surroundings of the power line. As technology advances, we will be able to collected, analyses and predict very large databases in the field of meteorology and electrical engineering. The ability of processing mentioned data, combined with know-how results in the capacity to operate power lines at their thermal limits during different ambient parameters. This technology called Dynamic Line Rating (DLR) – is not only a great way to increase the transmission capacity of a given line, but can also be effectively used to prevent, or even solve icing-related issues. Higher currents result in higher Joule-heats, that consequently heat the conductors. If limits can be reached or approached, icing can be prevented. If prevention is not possible, detection and removal of ice layer is necessary. The proper handling of this icing issues, requires advanced algorithms (expert systems) and reliable measuring equipment. The combination and synchronization between algorithms, weather service and measuring equipment is the key of the successful operation. An EU H2020 financed project called FLEXITRANSTORE has just been launched to develop a cross-country co-operation, with objective to improve anti-icing and de-icing solutions. To establish and analyse different solutions, the project includes several universities, TSOs and DSOs. To solve mentioned icing issues Budapest University of Technology and Economics’ (BME) developed an advanced neural-network based algorithm which use OTLM system. It is planned to install and demonstrate the capabilities of this new technology on the DSOs grid (Electro Ljubljana - ELJ). Besides the introduction of DLR and icing, this paper also focuses on the preparation/organisation of co-operation between different companies and universities

    Oblique circle method for measuring the curvature and twist of mitotic spindle microtubule bundles

    Get PDF
    The highly ordered spatial organization of microtubule bundles in the mitotic spindle is crucial for its proper functioning. The recent discovery of twisted shapes of microtubule bundles and spindle chirality suggests that the bundles extend along curved paths in three dimensions, rather than being confined to a plane. This, in turn, implies that rotational forces, i.e., torques, exist in the spindle in addition to the widely studied linear forces. However, studies of spindle architecture and forces are impeded by a lack of a robust method for the geometric quantification of microtubule bundles in the spindle. In this work, we describe a simple method for measuring and evaluating the shapes of microtubule bundles by characterizing them in terms of their curvature and twist. By using confocal microscopy, we obtain three-dimensional images of spindles, which allows us to trace the entire microtubule bundle. For each traced bundle, we first fit a plane and then fit a circle lying in that plane. With this robust method, we extract the curvature and twist, which represent the geometric information characteristic for each bundle. As the bundle shapes reflect the forces within them, this method is valuable for the understanding of forces that act on chromosomes during mitosis

    The chirality of the mitotic spindle provides a mechanical response to forces and depends on microtubule motors and augmin

    Get PDF
    Forces produced by motor proteins and microtubule dynamics within the mitotic spindle are crucial for proper chromosome segregation. In addition to linear forces, rotational forces or torques are present in the spindle, which are reflected in the left-handed twisted shapes of microtubule bundles that make the spindle chiral. However, the biological role and molecular origins of spindle chirality are unknown. By developing methods for measuring the spindle twist, we show that spindles are most chiral near the metaphase-to-anaphase transition. To assess the role of chirality in spindle mechanics, we compressed the spindles along their axis. This resulted in a stronger left-handed twist, suggesting that the twisted shape allows for a mechanical response to forces. Inhibition or depletion of motor proteins that perform chiral stepping, Eg5/kinesin-5, Kif18A/kinesin-8, MKLP1/kinesin-6, and dynein, decreased the left-handed twist or led to right- handed twist, implying that these motors regulate the twist by rotating microtubules within their antiparallel overlaps or at the spindle pole. A right-handed twist was also observed after the depletion of the microtubule nucleator augmin, indicating its contribution to the twist through the nucleation of antiparallel bridging microtubules. The uncovered switch from left- handed to right-handed twist reveals the existence of competing mechanisms that promote twisting in opposite directions. As round spindles are more twisted than the elongated ones are, we infer that bending and twisting moments are generated by similar molecular mechanisms and propose a physiological role for spindle chirality in allowing the spindle to absorb mechanical load

    Naegleria’s mitotic spindles are built from unique tubulins and highlight core spindle features

    Get PDF
    Naegleria gruberi is a unicellular eukaryote whose evolutionary distance from animals and fungi has made it useful for developing hypotheses about the last common eukaryotic ancestor. Naegleria amoebae lack a cytoplasmic microtubule cytoskeleton and assemble microtubules only during mitosis and thus represent a unique system for studying the evolution and functional specificity of mitotic tubulins and the spindles they assemble. Previous studies show that Naegleria amoebae express a divergent α-tubulin during mitosis, and we now show that Naegleria amoebae express a second mitotic α- and two mitotic β-tubulins. The mitotic tubulins are evolutionarily divergent relative to typical α- and β-tubulins and contain residues that suggest distinct microtubule properties. These distinct residues are conserved in mitotic tubulin homologs of the “brain-eating amoeba” Naegleria fowleri, making them potential drug targets. Using quantitative light microscopy, we find that Naegleria’s mitotic spindle is a distinctive barrel-like structure built from a ring of microtubule bundles. Similar to those of other species, Naegleria’s spindle is twisted, and its length increases during mitosis, suggesting that these aspects of mitosis are ancestral features. Because bundle numbers change during metaphase, we hypothesize that the initial bundles represent kinetochore fibers and secondary bundles function as bridging fibers

    Nf1 Mutation Disrupts Activity-Dependent Oligodendroglial Plasticity and Motor Learning in Mice

    Get PDF
    Neurogenetic disorders, such as neurofibromatosis type 1 (NF1), can cause cognitive and motor impairments, traditionally attributed to intrinsic neuronal defects such as disruption of synaptic function. Activity-regulated oligodendroglial plasticity also contributes to cognitive and motor functions by tuning neural circuit dynamics. However, the relevance of oligodendroglial plasticity to neurological dysfunction in NF1 is unclear. Here we explore the contribution of oligodendrocyte progenitor cells (OPCs) to pathological features of the NF1 syndrome in mice. Both male and female littermates (4-24 weeks of age) were used equally in this study. We demonstrate that mice with global or OPC-specific Nf1 heterozygosity exhibit defects in activity-dependent oligodendrogenesis and harbor focal OPC hyperdensities with disrupted homeostatic OPC territorial boundaries. These OPC hyperdensities develop in a cell-intrinsic Nf1 mutation-specific manner due to differential PI3K/AKT activation. OPC-specific Nf1 loss impairs oligodendroglial differentiation and abrogates the normal oligodendroglial response to neuronal activity, leading to impaired motor learning performance. Collectively, these findings show that Nf1 mutation delays oligodendroglial development and disrupts activity-dependent OPC function essential for normal motor learning in mice

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    Measurement of curvature and twist of microtubule bundles in the mitotic spindle

    Full text link
    AbstractThe highly ordered spatial organization of microtubule bundles in the mitotic spindle is crucial for its proper functioning. The recent discovery of twisted shapes of microtubule bundles and spindle chirality suggests that the bundles extend along curved paths in three dimensions, rather than being confined to a plane. This in turn implies that rotational forces exist in the spindle in addition to the widely studied linear forces. However, studies of spindle architecture and forces are impeded by a lack of a robust method for the geometric quantification of microtubule bundles in the spindle. In this paper, we describe a simple method for measuring and evaluating the shapes of microtubule bundles, by characterizing them in terms of their curvature and twist. By using confocal microscopy, we obtain three-dimensional images of spindles, which allow us to trace the entire microtubule bundles. For each traced bundle, we first fit a plane, and then fit a circle lying in that plane. With this easily reproducible method, we extract the curvature and twist, which represent the geometric information characteristic for each bundle. As the bundle shapes reflect the forces within them, this method is valuable for the understanding of forces that act on chromosomes during mitosis.</jats:p

    Advanced prevention against icing on high voltage power lines

    Full text link
    Historical meteorological data indicates, that our weather is becoming more and more extreme. For the electrical utility operators (Distribution System Operators - DSOs and Transmission System Operators - TSOs), these changes arise in new operation challenges that need to be addressed. For example, frequent icing phenomenon affects all the components of the power line by a significant mechanical overload: it endangers the conductors, the insulators and the towers, as well. The result is often fatal and beside serious failures, it effects on operators’ decisions. These not only endanger the reliability of electrical grids by the loss of a power line for weeks or even months, but in general, the safety in the surroundings of the power line. As technology advances, we will be able to collected, analyses and predict very large databases in the field of meteorology and electrical engineering. The ability of processing mentioned data, combined with know-how results in the capacity to operate power lines at their thermal limits during different ambient parameters. This technology called Dynamic Line Rating (DLR) – is not only a great way to increase the transmission capacity of a given line, but can also be effectively used to prevent, or even solve icing-related issues. Higher currents result in higher Joule-heats, that consequently heat the conductors. If limits can be reached or approached, icing can be prevented. If prevention is not possible, detection and removal of ice layer is necessary. The proper handling of this icing issues, requires advanced algorithms (expert systems) and reliable measuring equipment. The combination and synchronization between algorithms, weather service and measuring equipment is the key of the successful operation. An EU H2020 financed project called FLEXITRANSTORE has just been launched to develop a cross-country co-operation, with objective to improve anti-icing and de-icing solutions. To establish and analyse different solutions, the project includes several universities, TSOs and DSOs. To solve mentioned icing issues Budapest University of Technology and Economics’ (BME) developed an advanced neural-network based algorithm which use OTLM system. It is planned to install and demonstrate the capabilities of this new technology on the DSOs grid (Electro Ljubljana - ELJ). Besides the introduction of DLR and icing, this paper also focuses on the preparation/organisation of co-operation between different companies and universities.</jats:p
    corecore