53 research outputs found

    Calogero-Sutherland Approach to Defect Blocks

    Full text link
    Extended objects such as line or surface operators, interfaces or boundaries play an important role in conformal field theory. Here we propose a systematic approach to the relevant conformal blocks which are argued to coincide with the wave functions of an integrable multi-particle Calogero-Sutherland problem. This generalizes a recent observation in 1602.01858 and makes extensive mathematical results from the modern theory of multi-variable hypergeometric functions available for studies of conformal defects. Applications range from several new relations with scalar four-point blocks to a Euclidean inversion formula for defect correlators.Comment: v2: changes for clarit

    Generalized Toda Theory from Six Dimensions and the Conifold

    Get PDF
    Recently, a physical derivation of the Alday-Gaiotto-Tachikawa correspondence has been put forward. A crucial role is played by the complex Chern-Simons theory arising in the 3d-3d correspondence, whose boundary modes lead to Toda theory on a Riemann surface. We explore several features of this derivation and subsequently argue that it can be extended to a generalization of the AGT correspondence. The latter involves codimension two defects in six dimensions that wrap the Riemann surface. We use a purely geometrical description of these defects and find that the generalized AGT setup can be modeled in a pole region using generalized conifolds. Furthermore, we argue that the ordinary conifold clarifies several features of the derivation of the original AGT correspondence.Comment: 27+2 pages, 3 figure

    Chiral Magnetic Effect in Hydrodynamic Approximation

    Full text link
    We review derivations of the chiral magnetic effect (ChME) in hydrodynamic approximation. The reader is assumed to be familiar with the basics of the effect. The main challenge now is to account for the strong interactions between the constituents of the fluid. The main result is that the ChME is not renormalized: in the hydrodynamic approximation it remains the same as for non-interacting chiral fermions moving in an external magnetic field. The key ingredients in the proof are general laws of thermodynamics and the Adler-Bardeen theorem for the chiral anomaly in external electromagnetic fields. The chiral magnetic effect in hydrodynamics represents a macroscopic manifestation of a quantum phenomenon (chiral anomaly). Moreover, one can argue that the current induced by the magnetic field is dissipation free and talk about a kind of "chiral superconductivity". More precise description is a ballistic transport along magnetic field taking place in equilibrium and in absence of a driving force. The basic limitation is exact chiral limit while the temperature--excitingly enough- does not seemingly matter. What is still lacking, is a detailed quantum microscopic picture for the ChME in hydrodynamics. Probably, the chiral currents propagate through lower-dimensional defects, like vortices in superfluid. In case of superfluid, the prediction for the chiral magnetic effect remains unmodified although the emerging dynamical picture differs from the standard one.Comment: 35 pages, prepared for a volume of the Springer Lecture Notes in Physics "Strongly interacting matter in magnetic fields" edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Symmetry enhancements via 5d instantons, qW-algebrae and (1, 0) superconformal index

    Get PDF
    We explore N=(1,0) superconformal six-dimensional theories arising from M5 branes probing a transverse Ak singularity. Upon circle compactification to 5 dimensions, we describe this system with a dual pq-web of five-branes and propose the spectrum of basic five-dimensional instanton operators driving global symmetry enhancement. For a single M5 brane, we find that the exact partition function of the 5d quiver gauge theory matches the 6d (1, 0) index, which we compute by letter counting. We finally show that S-duality of the pq-web implies new relations among vertex correlators of qW-algebrae
    corecore