23 research outputs found
16S rRNA Gene Amplicon Based Metagenomic Signatures of Rhizobiome Community in Rice Field During Various Growth Stages
Data_Sheet_1_16S rRNA Gene Amplicon Based Metagenomic Signatures of Rhizobiome Community in Rice Field During Various Growth Stages.pdf
Rice is a major staple food across the globe. Its growth and productivity is highly dependent on the rhizobiome where crosstalk takes place between plant and the microbial community. Such interactions lead to selective enrichment of plant beneficial microbes which ultimately defines the crop health and productivity. In this study, rhizobiome modulation is documented throughout the development of rice plant. Based on 16S rRNA gene affiliation at genus level, abundance, and diversity of plant growth promoting bacteria increased during the growth stages. The observed α diversity and rhizobiome complexity increased significantly (p 0.1%), based on 16S rRNA gene, were plant growth promoting bacteria that produces siderophore, indole-3-acetic acid, aminocyclopropane-1-carboxylic acid, and antimicrobials. Hydrogenotrophic methanogens dominated throughout cultivation. Type I methanotrophs (n = 12) had higher diversity than type II methanotrophs (n = 6). However, the later had significantly higher abundance (p = 0.003). Strong enrichment pattern was also observed in type I methanotrophs being enriched during water logged stages. Ammonia oxidizing Archaea were several folds more abundant than ammonia oxidizing bacteria. K-strategists Nitrosospira and Nitrospira dominated ammonia and nitrite oxidizing bacteria, respectively. The study clarifies the modulation of rhizobiome according to the rice developmental stages, thereby opening up the possibilities of bio-fertilizer treatment based on each cultivation stages.</p
Effects of an external magnetic field on microbial functional genes and metabolism of activated sludge based on metagenomic sequencing
Methods for the induction of reproduction in a tropical species of filamentous Ulva
The green seaweed Ulva is a major fouling organism but also an edible aquaculture product in Asia. This study quantified for the first time the effect of key factors on the reproduction of a tropical species of filamentous Ulva (Ulva sp. 3). The controlled timing of release of swarmers (motile reproductive bodies) was achieved when experiments were initiated in the early afternoon by exposing the thalli to a temperature shock (4°C) for 10 min and subsequently placing them into autoclaved filtered seawater under a 12 h light: 12 h dark photoperiod at 25°C. The release of swarmers then peaked two days after initiation. In contrast, segmentation, dehydration, salinity or time of initiation of experiments had no effect of any magnitude on reproduction. The released swarmers were predominantly biflagellate (95%), negatively phototactic and germinated without complementary gametes. This indicates that Ulva sp. 3 has a simple asexual life history dominated by biflagellate zoids
