2,712 research outputs found
Quantum Phase Transitions to Charge Order and Wigner Crystal Under Interplay of Lattice Commensurability and Long-Range Coulomb Interaction
Relationship among Wigner crystal, charge order and Mott insulator is studied
by the path-integral renormalization group method for two-dimensional lattices
with long-range Coulomb interaction. In contrast to Hartree-Fock results, the
solid stability drastically increases with lattice commensurability. The
transition to liquid occurs at the electron gas parameter for the
filling showing large reduction from in the continuum
limit. Correct account of quantum fluctuations are crucial to understand
charge-order stability generally observed only at simple fractional fillings
and nature of quantum liquids away from them.Comment: 4 pages including 7 figure
Finite-Temperature Mott Transition in the Two-Dimensional Hubbard Model
Mott transitions are studied in the two-dimensional Hubbard model by a
non-perturbative theory of correlator projection that systematically includes
spatial correlations into the dynamical mean-field approximation. Introducing a
nonzero second-neighbor transfer, a first-order Mott transition appears at
finite temperatures and ends at a critical point or curve.Comment: 2 pages, to appear in J. Mag. Mag. Mat. as proceedings of the
International Conference on Magnetism 200
Quantum-number projection in the path-integral renormalization group method
We present a quantum-number projection technique which enables us to exactly
treat spin, momentum and other symmetries embedded in the Hubbard model. By
combining this projection technique, we extend the path-integral
renormalization group method to improve the efficiency of numerical
computations. By taking numerical calculations for the standard Hubbard model
and the Hubbard model with next nearest neighbor transfer, we show that the
present extended method can extremely enhance numerical accuracy and that it
can handle excited states, in addition to the ground state.Comment: 11 pages, 7 figures, submitted to Phys. Rev.
Theory of Electron Differentiation, Flat Dispersion and Pseudogap Phenomena
Aspects of electron critical differentiation are clarified in the proximity
of the Mott insulator. The flattening of the quasiparticle dispersion appears
around momenta and on square lattices and determines the
criticality of the metal-insulator transition with the suppressed coherence in
that momentum region of quasiparticles. Such coherence suppression at the same
time causes an instability to the superconducting state if a proper incoherent
process is retained. The d-wave pairing interaction is generated from such
retained processes without disturbance from the coherent single-particle
excitations. Pseudogap phenomena widely observed in the underdoped cuprates are
then naturally understood from the mode-mode coupling of d-wave
superconducting(dSC) fluctuations with antiferromagnetic ones. When we assume
the existence of a strong d-wave pairing force repulsively competing with
antiferromagnetic(AFM) fluctuations under the formation of flat and damped
single-particle dispersion, we reproduce basic properties of the pseudogap seen
in the magnetic resonance, neutron scattering, angle resolved photoemission and
tunneling measurements in the cuprates.Comment: 9 pages including 2 figures, to appear in J. Phys. Chem. Solid
Superconductivity from Flat Dispersion Designed in Doped Mott Insulators
Routes to enhance superconducting instability are explored for doped Mott
insulators. With the help of insights for criticalities of metal-insulator
transitions, geometrical design of lattice structure is proposed to control the
instability. A guideline is to explicitly make flat band dispersions near the
Fermi level without suppressing two-particle channels. In a one-dimensional
model, numerical studies show that our prescription with finite-ranged hoppings
realizes large enhancement of spin-gap and pairing dominant regions. We also
propose several multi-band systems, where the pairing is driven by intersite
Coulomb repulsion.Comment: 4 pages, to be published in Phys. Rev. Let
Suppressed Coherence due to Orbital Correlations in the Ferromagnetically Ordered Metallic Phase of Mn Compounds
Small Drude weight together with small specific heat coefficient
observed in the ferromagnetic phase of RAMnO (R=La, Pr, Nd, Sm;
A=Ca, Sr, Ba) are analyzed in terms of a proximity effect of the Mott
insulator. The scaling theory for the metal-insulator transition with the
critical enhancement of orbital correlations toward the staggered ordering of
two orbitals such as and symmetries may lead to the
critical exponents of and with
and . The result agrees with the experimental indications.Comment: 4 pages LaTeX using jpsj.sty. To appear in J. Phys. Soc. Jpn.
67(1998)No.
Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method
Filling-control metal-insulator transition on the two-dimensional Hubbard
model is investigated by using the correlator projection method, which takes
into account momentum dependence of the free energy beyond the dynamical
mean-field theory. The phase diagram of metals and Mott insulators is analyzed.
Lifshitz transitions occur simultaneously with metal-insulator transitions at
large Coulomb repulsion. On the other hand, they are separated each other for
lower Coulomb repulsion, where the phase sandwiched by the Lifshitz and
metal-insulator transitions appears to show violation of the Luttinger sum
rule. Through the metal-insulator transition, quasiparticles retain nonzero
renormalization factor and finite quasi-particle weight in the both sides of
the transition. This supports that the metal-insulator transition is caused not
by the vanishing renormalization factor but by the relative shift of the Fermi
level into the Mott gap away from the quasiparticle band, in sharp contrast
with the original dynamical mean-field theory. Charge compressibility diverges
at the critical end point of the first-order Lifshitz transition at finite
temperatures. The origin of the divergence is ascribed to singular momentum
dependence of the quasiparticle dispersion.Comment: 24 pages including 10 figure
Absence of long-range superconducting correlations in the frustrated 1/2-filled band Hubbard model
We present many-body calculations of superconducting pair-pair correlations
in the ground state of the half-filled band Hubbard model on large anisotropic
triangular lattices. Our calculations cover nearly the complete range of
anisotropies between the square and isotropic triangular lattice limits. We
find that the superconducting pair-pair correlations decrease monotonically
with increasing onsite Hubbard interaction U for inter-pair distances greater
than nearest neighbor. For the large lattices of interest here the distance
dependence of the correlations approaches that for noninteracting electrons.
Both these results are consistent with the absence of superconductivity in this
model in the thermodynamic limit. We conclude that the effective 1/2-filled
band Hubbard model, suggested by many authors to be appropriate for the
kappa-(BEDT-TTF)-based organic charge-transfer solids, does not explain the
superconducting transition in these materials.Comment: 9 pages, 7 figures. Revised version to appear in Phys. Rev.
Screening of Coulomb interactions in transition metals
We discuss different methods of calculation of the screened Coulomb
interaction in transition metals and compare the constraint local-density
approximation (LDA) with the GW approach. We clarify that they offer
complementary methods of treating the screening and should serve for different
purposes. In the GW method, the renormalization of bare on-site Coulomb
interactions between 3d electrons occurs mainly through the screening by the
same 3d electrons, treated in the random phase approximation (RPA). The basic
difference of the constraint-LDA method is that it deals with the neutral
processes, where the Coulomb interactions are additionally screened by the
``excited'' electron, since it continues to stay in the system. This is the
main channel of screening by the itinerant () electrons, which is
especially strong in the case of transition metals and missing in the GW
approach, although the details of this screening may be affected by additional
approximations, which typically supplement these two methods. The major
drawback of the conventional constraint-LDA method is that it does not allow to
treat the energy-dependence of . We propose a promising approximation based
on the combination of these two methods. First, we take into account the
screening of Coulomb interactions in the 3d-electron-line bands located near
the Fermi level by the states from the subspace being orthogonal to these
bands, using the constraint-LDA methods. The obtained interactions are further
renormalized within the bands near the Fermi level in RPA. This allows the
energy-dependent screening by electrons near the Fermi level including the same
3d electrons.Comment: 25 pages, 5 figures, 2 table
- …
