1,177 research outputs found

    On Impedance Bandwidth of Resonant Patch Antennas Implemented Using Structures with Engineered Dispersion

    Get PDF
    We consider resonant patch antennas, implemented using loaded transmission-line networks and other exotic structures having engineered dispersion. An analytical expression is derived for the ratio of radiation quality factors of such antennas and conventional patch antennas loaded with (reference) dielectrics. In the ideal case this ratio depends only on the propagation constant and wave impedance of the structure under test, and it can be conveniently used to study what kind of dispersion leads to improved impedance bandwidth. We illustrate the effect of dispersion by implementing a resonant patch antenna using a periodic network of LC elements. The analytical results predicting enhanced impedance bandwidth compared to the reference results are validated using a commercial circuit simulator. Discussion is conducted on the practical limitations for the use of the proposed expression.Comment: 4 pages, 7 figure

    Influence of molecular weight on the phase behavior and structure formation of branched side-chain hairy-rod polyfluorene in bulk phase.

    Get PDF
    We report on an experimental study of the self-organization and phase behavior of hairy-rod π -conjugated branched side-chain polyfluorene, poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl]—i.e., poly[2,7–(9,9–bis(2–ethylhexyl)fluorene] (PF2∕6) —as a function of molecular weight (Mn) . The results have been compared to those of phenomenological theory. Samples for which Mn=3–147 kg∕mol were used. First, the stiffness of PF2∕6 , the assumption of the theory, has been probed by small-angle neutron scattering in solution. Thermogravimetry has been used to show that PF2∕6 is thermally stable over the conditions studied. Second, the existence of nematic and hexagonal phases has been phenomenologically identified for lower and higher Mn (LMW, Mn<Mn* and HMW, Mn>Mn* ) regimes, respectively, based on free-energy argument of nematic and hexagonal hairy rods and found to correspond to the experimental x-ray diffraction (XRD) results for PF2∕6 . By using the lattice parameters of PF2∕6 as an experimental input, the nematic-hexagonal transition has been predicted in the vicinity of glassification temperature (Tg) of PF2∕6 . Then, by taking the orientation parts of the free energies into account the nematic-hexagonal transition has been calculated as a function of temperature and Mn and a phase diagram has been formed. Below Tg of 80 °C only (frozen) nematic phase is observed for Mn<Mn*=104 g∕mol and crystalline hexagonal phase for Mn>Mn* . The nematic-hexagonal transition upon heating is observed for the HMW regime depending weakly on Mn , being at 140–165 °C for Mn>Mn* . Third, the phase behavior and structure formation as a function of Mn have been probed using powder and fiber XRD and differential scanning calorimetry and reasonable semiquantitative agreement with theory has been found for Mn≄3 kg∕mol . Fourth, structural characteristics are widely discussed. The nematic phase of LMW materials has been observed to be denser than high-temperature nematic phase of HMW compounds. The hexagonal phase has been found to be paracrystalline in the (ab0) plane but a genuine crystal meridionally. We also find that all these materials including the shortest 10-mer possess the formerly observed rigid five-helix hairy-rod molecular structure

    Iso-Flux Tension Propagation Theory of Driven Polymer Translocation: The Role of Initial Configurations

    Get PDF
    We investigate the dynamics of pore-driven polymer translocation by theoretical analysis and molecular dynamics (MD) simulations. Using the tension propagation theory within the constant flux approximation we derive an explicit equation of motion for the tension front. From this we derive a scaling relation for the average translocation time τ, which captures the asymptotic result τ∝N1+Îœ0 , where N 0 is the chain length and Îœ is the Flory exponent. In addition, we derive the leading correction-to-scaling term to τ and show that all terms of order N2Îœ0 exactly cancel out, leaving only a finite-chain length correction term due to the effective pore friction, which is linearly proportional to N 0. We use the model to numerically include fluctuations in the initial configuration of the polymer chain in addition to thermal noise. We show that when the cis side fluctuations are properly accounted for, the model not only reproduces previously known results but also considerably improves the estimates of the monomer waiting time distribution and the time evolution of the translocation coordinate s(t), showing excellent agreement with MD simulations.Peer reviewe

    On the Definition of Effective Permittivity and Permeability For Thin Composite Layers

    Get PDF
    The problem of definition of effective material parameters (permittivity and permeability) for composite layers containing only one-two parallel arrays of complex-shaped inclusions is discussed. Such structures are of high importance for the design of novel metamaterials, where the realizable layers quite often have only one or two layers of particles across the sample thickness. Effective parameters which describe the averaged induced polarizations are introduced. As an explicit example, we develop an analytical model suitable for calculation of the effective material parameters ϔeff\epsilon_{\rm{eff}} and Όeff\mu_{\rm{eff}} for double arrays of electrically small electrically polarizable scatterers. Electric and magnetic dipole moments induced in the structure and the corresponding reflection and transmission coefficients are calculated using the local field approach for the normal plane-wave incidence, and effective parameters are introduced through the averaged fields and polarizations. In the absence of losses both material parameters are purely real and satisfy the Kramers-Kronig relations and the second law of thermodynamics. We compare the analytical results to the simulated and experimental results available in the literature. The physical meaning of the introduced parameters is discussed in detail.Comment: 6 pages, 5 figure

    Diffusion in periodic potentials with path integral hyperdynamics

    Get PDF
    We consider the diffusion of Brownian particles in one-dimensional periodic potentials as a test bench for the recently proposed stochastic path integral hyperdynamics (PIHD) scheme [Chen and Horing, J. Chem. Phys. 126, 224103 (2007)]. First, we consider the case where PIHD is used to enhance the transition rate of activated rare events. To this end, we study the diffusion of a single Brownian particle moving in a spatially periodic potential in the high-friction limit at low temperature. We demonstrate that the boost factor as compared to straight molecular dynamics (MD) has nontrivial behavior as a function of the bias force. Instead of growing monotonically with the bias, the boost attains an optimal maximum value due to increased error in the finite path sampling induced by the bias. We also observe that the PIHD method can be sensitive to the choice of numerical integration algorithm. As the second case, we consider parallel resampling of multiple bias force values in the case of a Brownian particle in a periodic potential subject to an external ac driving force. We confirm that there is no stochastic resonance in this system. However, while the PIHD method allows one to obtain data for multiple values of the ac bias, the boost with respect to MD remains modest due to the simplicity of the equation of motion in this case.Peer reviewe

    Noise of a single electron transistor on a Si3N4 membrane

    Get PDF
    We have investigated the influence of electron-beam writing on the creation of charge trapping centers which cause 1/f noise in single electron transistors (SET). Two Al/AlOx/Al devices were compared: one where the SET is on a {100} silicon wafer covered by a 120-nm-thick layer of Si3N4, and another one in which the Si was etched away from below the nitride membrane before patterning the SET. The background charge noise was found to be 1×10 exp −3 e/√Hz at 10 Hz in both devices, independent of the substrate thickness.Peer reviewe

    Polymer translocation under time-dependent driving forces: resonant activation induced by attractive polymer-pore interactions

    Get PDF
    We study the driven translocation of polymers under time-dependent driving forces using N-particle Langevin dynamics simulations. We consider the force to be either sinusoidally oscillating in time or dichotomic noise with exponential correlation time, to mimic both plausible experimental setups and naturally occurring biological conditions. In addition, we consider both the case of purely repulsive polymer-pore interactions and the case with additional attractive polymer-pore interactions, typically occurring inside biological pores. We find that the nature of the interaction fundamentally affects the translocation dynamics. For the non-attractive pore, the translocation time crosses over to a fast translocation regime as the frequency of the driving force decreases. In the attractive pore case, because of a free energy well induced inside the pore, the translocation time can be a minimum at the optimal frequency of the force, the so-called resonant activation. In the latter case, we examine the effect of various physical parameters on the resonant activation, and explain our observations using simple theoretical arguments.Peer reviewe

    Overview of Forestry, and Wood Fuel Supply Chains (Chapter 2)

    Get PDF
    • 

    corecore