1,612 research outputs found

    Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster

    Full text link
    Galaxy clusters form through a sequence of mergers of smaller galaxy clusters and groups. Models of diffusive shock acceleration (DSA) suggest that in shocks that occur during cluster mergers, particles are accelerated to relativistic energies, similar to supernova remnants. Together with magnetic fields these particles emit synchrotron radiation and may form so-called radio relics. Here we report the detection of a radio relic for which we find highly aligned magnetic fields, a strong spectral index gradient, and a narrow relic width, giving a measure of the magnetic field in an unexplored site of the universe. Our observations prove that DSA also operates on scales much larger than in supernova remnants and that shocks in galaxy clusters are capable of producing extremely energetic cosmic rays.Comment: Published in Science Express on 23 September 2010, 6 figures, Supporting Online Material included. This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science, volume 330, 15 October 201

    X-ray line tomography of AGN-induced motion in clusters of galaxies

    Full text link
    The thermal broadening of emission lines of heavy ions is small enough such that Doppler shifts due to bulk motions may be detected with the next generation of X-ray observatories. This opens up the possibility to study gas velocities in the intra-cluster medium. Here we study the effect of bulk motions induced by a central active galactic nucleus (AGN) on the emission lines around the FeXXV complex. We have modelled the evolution of AGN-induced bubbles in a realistic cosmological framework and studied the resulting FeXXV line profiles. We found that in clusters with AGN feedback, motions induced by the inflation of bubbles and their buoyant rise lead to distinct features in the iron emission lines that are detectable with a spectral resolution of about 10 eV. These observations will help to determine the mechanical energy that resides in the bubbles and thereby the kinetic luminosity of the AGN.Comment: to appear in Ap

    Diffuse radio emission in the complex merging galaxy cluster Abell 2069

    Full text link
    Galaxy clusters with signs for a recent merger show in many cases extended diffuse radio features. This emission originates from relativistic electrons which suffer synchrotron losses due to the intra-cluster magnetic field. The mechanisms of the particle acceleration and the properties of the magnetic field are still poorly understood. We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and a Giant Metrewave Radio Telescope (GMRT) observation at 322 MHz. We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density to 25 +/- 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density to 15 +/- 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.Comment: 6 pages, 3 figures, accepted for publication in A&

    Radio relics in cosmological simulations

    Full text link
    Radio relics have been discovered in many galaxy clusters. They are believed to trace shock fronts induced by cluster mergers. Cosmological simulations allow us to study merger shocks in detail since the intra-cluster medium is heated by shock dissipation. Using high resolution cosmological simulations, identifying shock fronts and applying a parametric model for the radio emission allows us to simulate the formation of radio relics. We analyze a simulated shock front in detail. We find a rather broad Mach number distribution. The Mach number affects strongly the number density of relativistic electrons in the downstream area, hence, the radio luminosity varies significantly across the shock surface. The abundance of radio relics can be modeled with the help of the radio power probability distribution which aims at predicting radio relic number counts. Since the actual electron acceleration efficiency is not known, predictions for the number counts need to be normalized by the observed number of radio relics. For the characteristics of upcoming low frequency surveys we find that about thousand relics are awaiting discovery.Comment: 10 pages, 4 figures, Invited talk at the conference "Diffuse Relativistic Plasmas", Bangalore, 1-4 March 2011; in press in special issue of Journal of Astrophysics and Astronom
    corecore