59 research outputs found

    Airborne Mold and Endotoxin Concentrations in New Orleans, Louisiana, after Flooding, October through November 2005

    Get PDF
    BACKGROUND: The hurricanes and flooding in New Orleans, Louisiana, in October and November 2005 resulted in damp conditions favorable to the dispersion of bioaerosols such as mold spores and endotoxin. OBJECTIVE: Our objective in this study was to assess potential human exposure to bioaerosols in New Orleans after the flooding of the city. METHODS: A team of investigators performed continuous airborne sampling for mold spores and endotoxin outdoors in flooded and nonflooded areas, and inside homes that had undergone various levels of remediation, for periods of 5–24 hr during the 2 months after the flooding. RESULTS: The estimated 24-hr mold concentrations ranged from 21,000 to 102,000 spores/m(3) in outdoor air and from 11,000 to 645,000 spores/m(3) in indoor air. The mean outdoor spore concentration in flooded areas was roughly double the concentration in nonflooded areas (66,167 vs. 33,179 spores/m(3); p < 0.05). The highest concentrations were inside homes. The most common mold species were from the genera of Cladosporium and Aspergillus/Penicillium; Stachybotrys was detected in some indoor samples. The airborne endotoxin concentrations ranged from 0.6 to 8.3 EU (endo-toxin units)/m(3) but did not vary with flooded status or between indoor and outdoor environments. CONCLUSIONS: The high concentration of mold measured indoors and outdoors in the New Orleans area is likely to be a significant respiratory hazard that should be monitored over time. Workers and returning residents should use appropriate personal protective equipment and exposure mitigation techniques to prevent respiratory morbidity and long-term health effects

    Impact of meteorological variation on hospital visits of patients with tree pollen allergy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Climate change could affect allergic diseases, especially due to pollen. However, there has been no epidemiologic study to demonstrate the relationship between meteorological factors, pollen, and allergic patients. We aimed to investigate the association between meteorological variations and hospital visits of patients with tree pollen allergy.</p> <p>Methods</p> <p>The study subjects were adult patients who received skin prick tests between April and July from 1999 to 2008. We reviewed the medical records for the test results of 4,715 patients. Patients with tree pollen allergy were defined as those sensitized to more than 1 of 12 tree pollen allergens. We used monthly means of airborne tree pollen counts and meteorological factors: maximum/average/minimum temperature, relative humidity, and precipitation. We analyzed the correlations between meteorological variations, tree pollen counts, and the patient numbers. Multivariable logistic regression analyses were used to investigate the associations between meteorological factors and hospital visits of patients.</p> <p>Results</p> <p>The minimum temperature in March was significantly and positively correlated with tree pollen counts in March/April and patient numbers from April through July. Pollen counts in March/April were also correlated with patient numbers from April through July. After adjusting for confounders, including air pollutants, there was a positive association between the minimum temperature in March and hospital visits of patients with tree pollen allergy from April to July(odds ratio, 1.14; 95% CI 1.03 to 1.25).</p> <p>Conclusions</p> <p>Higher temperatures could increase tree pollen counts, affecting the symptoms of patients with tree pollen allergy, thereby increasing the number of patients visiting hospitals.</p

    Incidence of post-harvest disease and airborne fungal spores in a vegetable market

    Get PDF
    The sampling of bioaerosols has been carried out using a Rotorod sampler as well as by exposing culture plates. The screening of some common vegetables was also done for the isolation of fungi as market pathogens to study post-harvest diseases. Altogether, fifty nine fungal spore types and 78 species of 33 genera belonging to different groups were recorded respectively on the rotorod strips and on exposed Petri dishes. Many saprophytic and pathogenic fungi were found to be associated with sampled vegetables from the market. In all forty-six fungal species belonging to 26 genera were recovered from five varieties of vegetables collected from the same market. The most dominant forms of fungi were of Aspergillus followed by Cladosporium, Penicillium, Alternaria, Fusarium, Curvularia, Trichoderma, and Rhizopus. Aspergillus niger, A. flavus, A. fumigatus, Penicillium spp. and Cladosporium herbarum, found to be dominant during the period of investigation. Important mycotoxin-producing fungi such as A. flavus, A. fumigatus and Fusarium moniliforme were isolated from the vegetables collected from the market

    Effects of Wind Speed and Direction on Monthly Fluctuations of Cladosporium Conidia Concentration in the Air

    Get PDF
    This study determined the relationship between airborne concentration of Cladosporium spp. spores and wind speed and direction using real data (local wind measured by weather station) and modelled data (air mass flow computed with the aid of HYbrid Single Particle Lagrangian Trajectory model). Air samples containing fungal conidia were taken at an urban site (Worcester, UK) for a period of five consecutive years using a spore trap of the Hirst design. A threshold of ≄6000 s m−3 (double the clinical value) was applied in order to select high spore concentration days, when airborne transport of conidia at a regional scale was more likely to occur. Collected data were then examined using geospatial and statistical tools, including circular statistics. Obtained results showed that the greatest numbers of spore concentrations were detected in July and August, when C. herbarum, C. cladosporioides and C. macrocarpum sporulate. The circular correlation test was found to be more sensitive than Spearman’s rank test. The dominance of either local wind or the air mass on Cladosporium spore distributions varied between examined months. Source areas of this pathogen had an origin within the UK territory. Very high daily mean concentrations of Cladosporium spores were observed when daily mean local wind speed was vs ≀ 2.5 m s−1 indicating warm days with a light breeze
    • 

    corecore