241 research outputs found

    Why is the condensed phase of DNA preferred at higher temperature? DNA compaction in the presence of a multivalent cation

    Full text link
    Upon the addition of multivalent cations, a giant DNA chain exhibits a large discrete transition from an elongated coil into a folded compact state. We performed single-chain observation of long DNAs in the presence of a tetravalent cation (spermine), at various temperatures and monovalent salt concentrations. We confirmed that the compact state is preferred at higher temperatures and at lower monovalent salt concentrations. This result is interpreted in terms of an increase in the net translational entropy of small ions due to ionic exchange between higher and lower valence ions.Comment: 4pages,3figure

    Thermally Responsive Amphiphilic Conetworks and Gels Based on Poly(N‑isopropylacrylamide) and Polyisobutylene

    Get PDF
    Novel amphiphilic conetworks (APCN) consisting of thermoresponsive poly(N-isoproplyacrylamide) (PNiPAAm) cross-linked by hydrophobic methacrylate-telechelic polyisobutylene (MA-PIB-MA) were successfully synthesized in a broad composition range. The resulting PNiPAAm-l-PIB conetworks (“l” stands for “linked by”) were obtained by radical copolymerization of NiPAAm with MA-PIB-MA in tetrahydrofuran, a cosolvent for all the components. Low amounts of extractables substantiated efficient network formation. The composition dependent two glass transition temperatures (Tg) by DSC analysis indicate microphase separation of the cross-linked components without mixed phases. It was found that the PNiPAAm-l-PIB conetworks are uniformly swellable in both water and n-hexane; i.e., these new materials behave either as hydrogels or as hydrophobic gels in aqueous or nonpolar media, respectively. The uniform swelling in both polar and nonpolar solutes indicates cocontinuous (bicontinuous) phase morphology. The equilibrium swelling degrees (R) depend on composition, that is, the higher the PIB content, the lower the R in water and the higher in n-hexane. The PNiPAAm phase keeps its thermoresponsive behavior in the conetworks as shown by significant decrease of the swelling degree in water between 20 and 35 °C. The lower critical solubility temperature (LCST) values determined by DSC are found to decrease from 34.1 °C (for the pure PNiPAAm homopolymer) to the range of 25–28 °C in the conetworks, and the extent of the LCST decrease is proportional with the PIB content. Deswelling-swelling, i.e., heating–cooling, cycle indicates insignificant hysteresis in these new thermoresponsive materials. This indicates that PNiPAAm-l-PIB conetworks with predetermined and thermoresponsive swelling behavior can be designed and utilized in several advanced applications on the basis of results obtained in the course of this study

    Non-ionic Thermoresponsive Polymers in Water

    Full text link

    Molecular Architecture of Temperature-Responsive Bioconjugates

    No full text

    Bioconjugates from Synthetic Polymers -How they can be married?-

    No full text

    Cell Culture on a Thermo-Responsive Polymer Surface

    No full text
    • …
    corecore