170 research outputs found
Focusing and Compression of Ultrashort Pulses through Scattering Media
Light scattering in inhomogeneous media induces wavefront distortions which
pose an inherent limitation in many optical applications. Examples range from
microscopy and nanosurgery to astronomy. In recent years, ongoing efforts have
made the correction of spatial distortions possible by wavefront shaping
techniques. However, when ultrashort pulses are employed scattering induces
temporal distortions which hinder their use in nonlinear processes such as in
multiphoton microscopy and quantum control experiments. Here we show that
correction of both spatial and temporal distortions can be attained by
manipulating only the spatial degrees of freedom of the incident wavefront.
Moreover, by optimizing a nonlinear signal the refocused pulse can be shorter
than the input pulse. We demonstrate focusing of 100fs pulses through a 1mm
thick brain tissue, and 1000-fold enhancement of a localized two-photon
fluorescence signal. Our results open up new possibilities for optical
manipulation and nonlinear imaging in scattering media
Determination of the diffusion constant using phase-sensitive measurements
We apply a pulsed-light interferometer to measure both the intensity and the
phase of light that is transmitted through a strongly scattering disordered
material. From a single set of measurements we obtain the time-resolved
intensity, frequency correlations and statistical phase information
simultaneously. We compare several independent techniques of measuring the
diffusion constant for diffuse propagation of light. By comparing these
independent measurements, we obtain experimental proof of the consistency of
the diffusion model and corroborate phase statistics theory.Comment: 9 pages, 8 figures, submitted to Phys. Rev.
Optimal Stopping with Randomly Arriving Opportunities to Stop
We develop methods to solve general optimal stopping problems with
opportunities to stop that arrive randomly. Such problems occur naturally in
applications with market frictions. Pivotal to our approach is that our methods
operate on random rather than deterministic time scales. This enables us to
convert the original problem into an equivalent discrete-time optimal stopping
problem with -valued stopping times and a possibly infinite
horizon. To numerically solve this problem, we design a random times least
squares Monte Carlo method. We also analyze an iterative policy improvement
procedure in this setting. We illustrate the efficiency of our methods and the
relevance of randomly arriving opportunities in a few examples
Dependent Microstructure Noise and Integrated Volatility: Estimation from High-Frequency Data
In this paper, we develop econometric tools to analyze the integrated volatility (IV) of the efficient price and the dynamic properties of microstructure noise in high-frequency data under general dependent noise. We first develop consistent estimators of the variance and autocovariances of noise using a variant of realized volatility. Next, we employ these estimators to adapt the pre-averaging method and derive consistent estimators of the IV, which converge stably to a mixed Gaussian distribution at the optimal rate n1/4. To improve the finite sample performance, we propose a multi-step approach that corrects the finite sample bias, which turns out to be crucial in applications. Our extensive simulation studies demonstrate the excellent performance of our multi-step estimators. In an empirical study, we analyze the dependence structures of microstructure noise and provide intuitive economic interpretations; we also illustrate the importance of accounting for both the serial dependence in noise and the finite sample bias when estimating IV
A versatile microarray platform for capturing rare cells
Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) - about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences
Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)
Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm
Shaping speckles: spatio-temporal focussing of an ultrafast pulse through a multiply scattering medium
The multiple scattering of coherent light is a problem of both fundamental
and applied importance. In optics, phase conjugation allows spatial focussing
and imaging through a multiply scattering medium; however, temporal control is
nonetheless elusive, and multiple scattering remains a challenge for
femtosecond science. Here, we report on the spatially and temporally resolved
measurement of a speckle field produced by the propagation of an ultrafast
optical pulse through a thick strongly scattering medium. Using spectral pulse
shaping, we demonstrate the spatially localized temporal recompression of the
output speckle to the Fourier-limit duration, offering an optical analogue to
time-reversal experiments in the acoustic regime. This approach shows that a
multiply scattering medium can be put to profit for light manipulation at the
femtosecond scale, and has a diverse range of potential applications that
includes quantum control, biological imaging and photonics.Comment: 7 pages, 3 figures, published in Nature Communication
Wavefront shaping with disorder-engineered metasurfaces
Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input–output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input–output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated ~2.2 × 10^8 addressable points in an ~8 mm field of view
Controlling waves in space and time for imaging and focusing in complex media
In complex media such as white paint and biological tissue, light encounters nanoscale refractive-index inhomogeneities that cause multiple scattering. Such scattering is usually seen as an impediment to focusing and imaging. However, scientists have recently used strongly scattering materials to focus, shape and compress waves by controlling the many degrees of freedom in the incident waves. This was first demonstrated in the acoustic and microwave domains using time reversal, and is now being performed in the optical realm using spatial light modulators to address the many thousands of spatial degrees of freedom of light. This approach is being used to investigate phenomena such as optical super-resolution and the time reversal of light, thus opening many new avenues for imaging and focusing in turbid medi
- …