30,447 research outputs found

    Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment

    Get PDF
    Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS

    Piloted simulation of an air-ground profile negotiation process in a time-based Air Traffic Control environment

    Get PDF
    Historically, development of airborne flight management systems (FMS) and ground-based air traffic control (ATC) systems has tended to focus on different objectives with little consideration for operational integration. A joint program, between NASA's Ames Research Center (Ames) and Langley Research Center (Langley), is underway to investigate the issues of, and develop systems for, the integration of ATC and airborne automation systems. A simulation study was conducted to evaluate a profile negotiation process (PNP) between the Center/TRACON Automation System (CTAS) and an aircraft equipped with a four-dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution which satisfies the separation requirements of ATC while remaining as close as possible to the aircraft's preferred trajectory. Results from the experiment indicate the potential for successful incorporation of aircraft-preferred arrival trajectories in the CTAS automation environment. Fuel savings on the order of 2 percent to 8 percent, compared to fuel required for the baseline CTAS arrival speed strategy, were achieved in the test scenarios. The data link procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. In particular, additional pilot control and understanding of the proposed aircraft-preferred trajectory, and a simplified clearance procedure were cited as necessary for operational implementation of the concept

    US and foreign alloy cross-reference database

    Get PDF
    Marshall Space Flight Center and other NASA installations have a continuing requirement for materials data from other countries involved with the development of joint international Spacelab experiments and other hardware. This need includes collecting data for common alloys to ascertain composition, physical properties, specifications, and designations. This data is scattered throughout a large number of specification statements, standards, handbooks, and other technical literature which make a manual search both tedious and often limited in extent. In recognition of this problem, a computerized database of information on alloys was developed along with the software necessary to provide the desired functions to access this data. The intention was to produce an initial database covering aluminum alloys, along with the program to provide a user-interface to the data, and then later to extend and refine the database to include other nonferrous and ferrous alloys

    Cationic Alkylaluminum-Complexed Zirconocene Hydrides as Participants in Olefin Polymerization Catalysis

    Get PDF
    The alkylaluminum-complexed zirconocene trihydride cation [(SBI)Zr(μ-H)_3(AliBu_2)_2]^+, which is obtained by reaction of (SBI)ZrCl_2 with [Ph_3C][B(C_6F_5)_4] and excess HAl^iBu_2 in toluene solution, catalyzes the formation of isotactic polypropene when exposed to propene at -30 °C. This cation remains the sole observable species in catalyst systems free of AlMe compounds. In the presence of AlMe_3, however, exposure to propene causes the trihydride cation to be completely converted, under concurrent consumption of all hydride species by propene hydroalumination, to the doubly Me-bridged cation [(SBI)Zr(μ-Me)_2AlMe_2]^+. The latter then becomes the resting state for further propene polymerization, which produces, by chain transfer to Al, mainly AlMe_2-capped isotactic polypropene
    corecore