11 research outputs found
Hydroimidazolone Modification of the Conserved Arg12 in Small Heat Shock Proteins: Studies on the Structure and Chaperone Function Using Mutant Mimics
Methylglyoxal (MGO) is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function. We identified MGO-modified arginine residues in αA-crystallin and found that replacing such arginine residues with alanine residues mimicked the effects of MGO on the chaperone function. Arginine 12 (R12) is a conserved amino acid residue in Hsp27 as well as αA- and αB-crystallin. When treated with MGO at or near physiological concentrations (2–10 µM), R12 was modified to hydroimidazolone in all three small heat shock proteins. In this study, we determined the effect of arginine substitution with alanine at position 12 (R12A to mimic MGO modification) on the structure and chaperone function of these proteins. Among the three proteins, the R12A mutation improved the chaperone function of only αA-crystallin. This enhancement in the chaperone function was accompanied by subtle changes in the tertiary structure, which increased the thermodynamic stability of αA-crystallin. This mutation induced the exposure of additional client protein binding sites on αA-crystallin. Altogether, our data suggest that MGO-modification of the conserved R12 in αA-crystallin to hydroimidazolone may play an important role in reducing protein aggregation in the lens during aging and cataract formation
Exploring Post-translational Arginine Modification Using Chemically Synthesized Methylglyoxal Hydroimidazolones
The methylglyoxal-derived hydroimidazolones (MG-Hs, Figure 1A) comprise the most prevalent class of non-enzymatic, post-translational modifications of protein arginine residues found in nature. These adducts form spontaneously in the human body, and are also present at high levels in the human diet. Despite numerous lines of evidence suggesting that MG-H–arginine adducts play critical roles in both healthy and disease physiology in humans, detailed studies of these molecules have been hindered by a lack of general synthetic strategies for their preparation in chemically homogeneous form, and on scales sufficient to enable detailed biochemical and cellular investigations. To address this limitation, we have developed efficient, multi-gram-scale syntheses of all MG-H–amino acid monomers in 2–3 steps starting from inexpensive, readily available starting materials. Thus, MG-H derivatives were readily incorporated into oligopeptides site-specifically using standard solid-phase peptide synthesis (SPPS). Access to synthetic MG-H-peptide adducts has enabled detailed biochemical investigations, which have revealed a series of novel and unexpected findings. First, one of the three MG-H isomers – MG-H3 – was found to possess potent, pH-dependent antioxidant properties in biochemical and cellular assays intended to replicate redox processes that occur in vivo. Computational and mechanistic studies suggest that MG-H3-containing constructs are capable of participating in mechanistically distinct H-atom-transfer and single-electron-transfer oxidation processes. Notably, the product of MG-H3 oxidation was unexpectedly observed to disassemble into the fully unmodified arginine residue and pyruvate in aqueous solution. We believe these observations to reflect meaningfully on the role(s) of MG-H–protein adducts in human physiology, and expect the synthetic reagents reported herein to enable investigations into non-enzymatic protein regulation at an unprecedented level of detail
Mass spectrometric determination of early and advanced glycation in biology
Protein glycation in biological systems occurs predominantly on lysine, arginine and Nterminal residues of proteins. Major quantitative glycation adducts are found at mean extents of modification of 1 – 5 mol percent of proteins. These are glucose-derived fructosamine on
lysine and N-terminal residues of proteins, methylglyoxal-derived hydroimidazolone on arginine residues and Nε-carboxymethyl-lysine residues mainly formed by the oxidative degradation of fructosamine. Total glycation adducts of different types are quantified by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LCMS/MS) in multiple reaction monitoring mode. Metabolism of glycated proteins is followed by LC-MS/MS of glycation free adducts as minor components of the amino acid metabolome. Glycated proteins and sites of modification within them – amino acid residues modified by the glycating agent moiety - are identified and quantified by label-free and stable isotope labelling with amino acids in cell culture (SILAC) high resolution mass spectrometry. Sites of glycation by glucose and methylglyoxal in selected proteins are listed. Key issues in applying proteomics techniques to analysis of glycated proteins are: (i) avoiding compromise of analysis by formation, loss and relocation of glycation adducts in pre-analytic processing; (ii) specificity of immunoaffinity enrichment procedures, (iii) maximizing protein sequence coverage in mass spectrometric analysis for detection of glycation sites, and (iv) development of bioinformatics tools for prediction of protein glycation sites. Protein glycation studies have
important applications in biology, ageing and translational medicine – particularly on studies of obesity, diabetes, cardiovascular disease, renal failure, neurological disorders and cancer. Mass spectrometric analysis of glycated proteins has yet to find widespread use clinically.
Future use in health screening, disease diagnosis and therapeutic monitoring, and drug and functional food development is expected. A protocol for high resolution mass spectrometry proteomics of glycated proteins is given