2,567 research outputs found

    Application of WRF-Chem to Forecasting PM10 Concentration over Poland

    Get PDF
    The meteorological and chemical transport model WRF-Chem was implemented to forecast PM10 concentrations over Poland. WRF-Chem version 3.5 was configured with three one way nested domains using the GFS meteorological data and the TNO MACC II emissions. Forecasts, with 48h lead time, were run for a winter and summer period 2014. WRF-Chem in general captures the variability in observed PM10 concentrations, but underestimates some peak concentrations during winter-time. The peaks coincide with either stable atmospheric condition during nighttime in the lower part of the planetary boundary layer or on days with very low surface temperatures. Such episodes lead to increased combustion in residential heating, where hard coal is the main fuel in Poland. This suggests that a key to improvement in the model performance for the peak concentrations is to focus on the simulation of PBL processes and the distribution of emissions with high resolution in WRF-Chem

    Application of WRF-Chem to Forecasting PM10 Concentration Over Poland

    Get PDF
    The meteorological and chemical transport model WRF-Chem was implemented to forecast PM10 concentrations over Poland. WRF-Chem version 3.5 was configured with three one-way nested domains using the GFS meteorological data and the TNO MACC II emissions. The 48 hour forecasts were run for each day of the winter and summer period of 2014 and there is only a small decrease in model performance for winter with respect to forecast lead time. The model in general captures the variability in observed PM10 concentrations for most of the stations. However, for some locations and specific episodes, the model performance is poor and the results cannot yet be used by official authorities. We argue that a higher resolution sector-based emission data will be helpful for this analysis in connection with a focus on planetary boundary layer processes in WRF-Chem and their impact on the initial distribution of emissions on both time and space

    Application of WRF-Chem to Forecast PM10 Concentrations Over Poland

    Get PDF
    The meteorological and chemical transport model WRF-Chem has been implemented to forecast PM10 concentrations over Poland. WRF-Chem version 3.5 was configured with three one way nested domains and the simulations were driven by the GFS meteorological data and the TNO MACC II emissions. The Regional Acid Deposition Model (RADM2) gas phase chemistry and the Modal Aerosol Dynamics Model for Europe with Secondary Organic Aerosol Model (MADE/SORGAM) aerosol module were applied in WRF-Chem. Forecasts were run 48 hours ahead for each day during a winter period from the 1st January to 28th February 2014. We have found that the model for most stations captures the variability of observed PM10 concentrations, whereas the highest observed peaks are often underestimated. Several of the peaks coincide with either stable atmospheric condition during nighttime in the lower part of the planetary boundary layer or on days with very low surface temperatures. This suggests that a key to a good simulation of the peak concentrations is to focus on the simulation of PBL processes and the distribution of emissions with high resolution in WRF-Che

    Aerosol-Radiation Feedback and PM10 Air Concentrations Over Poland

    Get PDF
    We have implemented the WRF-Chem model version 3.5 over Poland to quantify the direct and indirect feedback effects of aerosols on simulated meteorology and aerosol concentrations. Observations were compared with results from three simulations at high spatial resolutions of 5 × 5 km: (1) BASE—without any aerosol feedback effects; (2) DIR—with direct aerosol-radiative effects (3) INDIR—with direct and indirect aerosol-radiative effects. We study the overall effect during January 2011 as well as selected episodes of the highest differences in PM10 concentrations between the three simulations. For the DIR simulation, the decrease in monthly mean incoming solar radiation (SWDOWN) appears for the entire study area. It changes geographically, from about −8.0 to −2.0 W m−2, respectively for the southern and northern parts of the country. The highest changes do not correspond to the highest PM10 concentration. Due to the solar radiation changes, the surface mean monthly temperature (T2) decreases for 96 % of the area of Poland, but not more than 1.0 °C. Monthly mean PBLH changes by more than ±5 m for 53 % of the domain. Locally the differences in PBLH between the DIR and BASE are higher than ± 20 m. Due to the direct effect, for 84 % of the domain, the mean monthly PM10 concentrations increase by up to 1.9 µg m−3. For the INDIR simulation the spatial distribution of changes in incoming solar radiation as well as air temperature is similar to the DIR simulation. The decrease of SWDOWN is noticed for the entire domain and for 23 % of the domain is higher than −5.0 W m−2. The absolute differences of PBLH are slightly higher for INDIR than DIR but similarly distributed spatially. For daily episodes, the differences between the simulations are higher, both for meteorology and PM10 concentrations, and the pattern of changes is usually more complex. The results indicate the potential importance of the aerosol feedback effects on modelled meteorology and PM10 concentrations

    Electrodynamics of superconducting pnictide superlattices

    Full text link
    It has been recently reported (S. Lee et al., Nature Materials 12, 392, 2013) that superlattices where layers of the 8% Co-doped BaFe2As2 superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO3 or of oxygen-rich BaFe2As2, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multi-gap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.Comment: 4 pages, two figure

    Molecular ions in L1544. II. The ionization degree

    Get PDF
    The maps presented in Paper I are here used to infer the variation of the column densities of HCO+, DCO+, N2H+, and N2D+ as a function of distance from the dust peak. These results are interpreted with the aid of a crude chemical model which predicts the abundances of these species as a function of radius in a spherically symmetric model with radial density distribution inferred from the observations of dust emission at millimeter wavelengths and dust absorption in the infrared. Our main observational finding is that the N(N2D+)/N(N2H+) column density ratio is of order 0.2 towards the L1544 dust peak as compared to N(DCO+)/N(HCO+) = 0.04. We conclude that this result as well as the general finding that N2H+ and N2D+ correlate well with the dust is caused by CO being depleted to a much higher degree than molecular nitrogen in the high density core of L1544. Depletion also favors deuterium enhancement and thus N2D+, which traces the dense and highly CO-depleted core nucleus, is much more enhanced than DCO+. Our models do not uniquely define the chemistry in the high density depleted nucleus of L1544 but they do suggest that the ionization degree is a few times 10^{-9} and that the ambipolar diffusion time scale is locally similar to the free fall time. It seems likely that the lower limit which one obtains to ionization degree by summing all observable molecular ions is not a great underestimate of the true ionization degree. We predict that atomic oxygen is abundant in the dense core and, if so, H3O+ may be the main ion in the central highly depleted region of the core.Comment: 31 pages, 8 figures, to be published in Ap

    Pressure dependence of the charge-density-wave gap in rare-earth tri-tellurides

    Full text link
    We investigate the pressure dependence of the optical properties of CeTe3_3, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RRTe3_3.Comment: 5 pages, 4 figure

    Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Polarization

    Full text link
    We present a full-sky model of polarized Galactic microwave emission based on three years of observations by the Wilkinson Microwave Anisotropy Probe (WMAP) at frequencies from 23 to 94 GHz. The model compares maps of the Stokes Q and U components from each of the 5 WMAP frequency bands in order to separate synchrotron from dust emission, taking into account the spatial and frequency dependence of the synchrotron and dust components. This simple two-component model of the interstellar medium accounts for at least 97% of the polarized emission in the WMAP maps of the microwave sky. Synchrotron emission dominates the polarized foregrounds at frequencies below 50 GHz, and is comparable to the dust contribution at 65 GHz. The spectral index of the synchrotron component, derived solely from polarization data, is -3.2 averaged over the full sky, with a modestly flatter index on the Galactic plane. The synchrotron emission has mean polarization fraction 2--4% in the Galactic plane and rising to over 20% at high latitude, with prominent features such as the North Galactic Spur more polarized than the diffuse component. Thermal dust emission has polarization fraction 1% near the Galactic center, rising to 6% at the anti-center. Diffuse emission from high-latitude dust is also polarized with mean fractional polarization 0.036 +/- 0.011.Comment: 9 pages with 8 figures. For higher quality figures, see the version posted at http://lambda.gsfc.nasa.gov/product/map/dr2/map_bibliography.cf
    • …
    corecore