4,535 research outputs found

    Biometric surveillance in schools : cause for concern or case for curriculum?

    Get PDF
    This article critically examines the draft consultation paper issued by the Scottish Government to local authorities on the use of biometric technologies in schools in September 2008 (see http://www.scotland.gov.uk/Publications/2008/09/08135019/0). Coming at a time when a number of schools are considering using biometric systems to register and confirm the identity of pupils in a number of settings (cashless catering systems, automated registration of pupils' arrival in school and school library automation), this guidance is undoubtedly welcome. The present focus seems to be on using fingerprints, but as the guidance acknowledges, the debate in future may encompass iris prints, voice prints and facial recognition systems, which are already in use in non-educational settings. The article notes broader developments in school surveillance in Scotland and in the rest of the UK and argues that serious attention must be given to the educational considerations which arise. Schools must prepare pupils for life in the newly emergent 'surveillance society', not by uncritically habituating them to the surveillance systems installed in their schools, but by critically engaging them in thought about the way surveillance technologies work in the wider world, the various rationales given to them, and the implications - in terms of privacy, safety and inclusion - of being a 'surveilled subject'

    Supersymmetric D-brane Bound States with B-field and Higher Dimensional Instantons on Noncommutative Geometry

    Get PDF
    We classify supersymmetric D0-Dp bound states with a non-zero B-field by considering T-dualities of intersecting branes at angles. Especially, we find that the D0-D8 system with the B-field preserves 1/16, 1/8 and 3/16 of supercharges if the B-field satisfies the ``(anti-)self-dual'' condition in dimension eight. The D0-branes in this system are described by eight dimensional instantons on non-commutative R^8. We also discuss the extended ADHM construction of the eight-dimensional instantons and its deformation by the B-field. The modified ADHM equations admit a sort of the `fuzzy sphere' (embeddings of SU(2)) solution.Comment: 20 pages, LaTeX file, typos corrected and references adde

    Boundary Reflection Matrix for D4(1)D_4^{(1)} Affine Toda Field Theory

    Full text link
    We present one loop boundary reflection matrix for d4(1)d_4^{(1)} Toda field theory defined on a half line with the Neumann boundary condition. This result demonstrates a nontrivial cancellation of non-meromorphic terms which are present when the model has a particle spectrum with more than one mass. Using this result, we determine uniquely the exact boundary reflection matrix which turns out to be \lq non-minimal' if we assume the strong-weak coupling \lq duality'.Comment: 14 pages, Late

    Form factors of boundary fields for A(2)-affine Toda field theory

    Get PDF
    In this paper we carry out the boundary form factor program for the A(2)-affine Toda field theory at the self-dual point. The latter is an integrable model consisting of a pair of particles which are conjugated to each other and possessing two bound states resulting from the scattering processes 1 +1 -> 2 and 2+2-> 1. We obtain solutions up to four particle form factors for two families of fields which can be identified with spinless and spin-1 fields of the bulk theory. Previously known as well as new bulk form factor solutions are obtained as a particular limit of ours. Minimal solutions of the boundary form factor equations for all A(n)-affine Toda field theories are given, which will serve as starting point for a generalisation of our results to higher rank algebras.Comment: 24 pages LaTeX, 1 figur

    Elemental composition and oxidation of chamber organic aerosol

    Get PDF
    Recently, graphical representations of aerosol mass spectrometer (AMS) spectra and elemental composition have been developed to explain the oxidative and aging processes of secondary organic aerosol (SOA). It has been shown previously that oxygenated organic aerosol (OOA) components from ambient and laboratory data fall within a triangular region in the f_(44) vs. f_(43) space, where f_(44) and f_(43) are the ratios of the organic signal at m/z 44 and 43 to the total organic signal in AMS spectra, respectively; we refer to this graphical representation as the "triangle plot." Alternatively, the Van Krevelen diagram has been used to describe the evolution of functional groups in SOA. In this study we investigate the variability of SOA formed in chamber experiments from twelve different precursors in both "triangle plot" and Van Krevelen domains. Spectral and elemental data from the high-resolution Aerodyne aerosol mass spectrometer are compared to offline species identification analysis and FTIR filter analysis to better understand the changes in functional and elemental composition inherent in SOA formation and aging. We find that SOA formed under high- and low-NO_x conditions occupy similar areas in the "triangle plot" and Van Krevelen diagram and that SOA generated from already oxidized precursors allows for the exploration of areas higher on the "triangle plot" not easily accessible with non-oxidized precursors. As SOA ages, it migrates toward the top of the triangle along a path largely dependent on the precursor identity, which suggests increasing organic acid content and decreasing mass spectral variability. The most oxidized SOA come from the photooxidation of methoxyphenol precursors which yielded SOA O/C ratios near unity. α-pinene ozonolysis and naphthalene photooxidation SOA systems have had the highest degree of mass closure in previous chemical characterization studies and also show the best agreement between AMS elemental composition measurements and elemental composition of identified species within the uncertainty of the AMS elemental analysis. In general, compared to their respective unsaturated SOA precursors, the elemental composition of chamber SOA follows a slope shallower than −1 on the Van Krevelen diagram, which is indicative of oxidation of the precursor without substantial losss of hydrogen, likely due to the unsaturated nature of the precursors. From the spectra of SOA studied here, we are able to reproduce the triangular region originally constructed with ambient OOA compents with chamber aerosol showing that SOA becomes more chemically similar as it ages. Ambient data in the middle of the triangle represent the ensemble average of many different SOA precursors, ages, and oxidative processes

    Dyons in N=4 Supersymmetric Theories and Three-Pronged Strings

    Full text link
    We construct and explore BPS states that preserve 1/4 of supersymmetry in N=4 Yang-Mills theories. Such states are also realized as three-pronged strings ending on D3-branes. We correct the electric part of the BPS equation and relate its solutions to the unbroken abelian gauge group generators. Generic 1/4-BPS solitons are not spherically symmetric, but consist of two or more dyonic components held apart by a delicate balance between static electromagnetic force and scalar Higgs force. The instability previously found in three-pronged string configurations is due to excessive repulsion by one of these static forces. We also present an alternate construction of these 1/4-BPS states from quantum excitations around a magnetic monopole, and build up the supermultiplet for arbitrary (quantized) electric charge. The degeneracy and the highest spin of the supermultiplet increase linearly with a relative electric charge. We conclude with comments.Comment: 33 pages, two figures, LaTex, a footnote added, the figure caption of Fig.2 expanded, one more referenc

    G_2 invariant 7D Euclidean super Yang-Mills theory as a higher-dimensional analogue of the 3D super-BF theory

    Full text link
    A formulation of the N_T=1, D=8 Euclidean super Yang-Mills theory with generalized self-duality and reduced Spin(7)-invariance is given which avoids the peculiar extra constraints of Nishino and Rajpoot, hep-th/0210132. Its reduction to 7 dimensions leads to the G_2-invariant N_T=2, D=7 super Yang-Mills theory which may be regarded as a higher-dimensional analogue of the N=2, D=3 super-BF theory. When reducing further that G_2-invariant theory to 3 dimensions one gets the N_T=2 super-BF theory coupled to a spinorial hypermultiplet.Comment: 9 pages, Late

    Gravitating Monopole--Antimonopole Chains and Vortex Rings

    Full text link
    We construct monopole-antimonopole chain and vortex solutions in Yang-Mills-Higgs theory coupled to Einstein gravity. The solutions are static, axially symmetric and asymptotically flat. They are characterized by two integers (m,n) where m is related to the polar angle and n to the azimuthal angle. Solutions with n=1 and n=2 correspond to chains of m monopoles and antimonopoles. Here the Higgs field vanishes at m isolated points along the symmetry axis. Larger values of n give rise to vortex solutions, where the Higgs field vanishes on one or more rings, centered around the symmetry axis. When gravity is coupled to the flat space solutions, a branch of gravitating monopole-antimonopole chain or vortex solutions arises, and merges at a maximal value of the coupling constant with a second branch of solutions. This upper branch has no flat space limit. Instead in the limit of vanishing coupling constant it either connects to a Bartnik-McKinnon or generalized Bartnik-McKinnon solution, or, for m>4, n>4, it connects to a new Einstein-Yang-Mills solution. In this latter case further branches of solutions appear. For small values of the coupling constant on the upper branches, the solutions correspond to composite systems, consisting of a scaled inner Einstein-Yang-Mills solution and an outer Yang-Mills-Higgs solution.Comment: 18 pages, 12 figures, uses revte

    Noncommutative U(1) Instantons in Eight Dimensional Yang-Mills Theory

    Get PDF
    We study the noncommutative version of the extended ADHM construction in the eight dimensional U(1) Yang-Mills theory. This construction gives rise to the solutions of the BPS equations in the Yang-Mills theory, and these solutions preserve at least 3/16 of supersymmetries. In a wide subspace of the extended ADHM data, we show that the integer kk which appears in the extended ADHM construction should be interpreted as the D4D4-brane charge rather than the D0D0-brane charge by explicitly calculating the topological charges in the case that the noncommutativity parameter is anti-self-dual. We also find the relationship with the solution generating technique and show that the integer kk can be interpreted as the charge of the D0D0-brane bound to the D8D8-brane with the BB-field in the case that the noncommutativity parameter is self-dual.Comment: 22 page

    Conserved Charges in the Principal Chiral Model on a Supergroup

    Full text link
    The classical principal chiral model in 1+1 dimensions with target space a compact Lie supergroup is investigated. It is shown how to construct a local conserved charge given an invariant tensor of the Lie superalgebra. We calculate the super-Poisson brackets of these currents and argue that they are finitely generated. We show how to derive an infinite number of local charges in involution. We demonstrate that these charges Poisson commute with the non-local charges of the model
    corecore