166 research outputs found
A novel CFD model for design and performance prediction of recuperators for Indirect Evaporative Cooling
Indirect evaporative cooling (IEC) appears to be a highly promising technology for incorporating and/or substituting traditional air conditioning systems, as it can guarantee good cooling performance with a reduced environmental impact. In this study, a Computational Fluid Dynamics (CFD) model for design and performance prediction of recuperators for IEC systems with dry primary and secondary channels was developed. The model was validated against experimental data for a cross-flow recuperator, obtaining a maximum difference between numerical and experimental results of 4.9% for the secondary air outlet temperature, 5.3% for the primary air outlet temperature, and 8.1% for the dry-bulb effectiveness. After validation, the model was used to find a new plate geometry which guarantees a 12.5-15.9% improvement in the dry-bulb effectiveness, without an excessive increase in the pressure losses along the channels
Synchronized multiple drop impacts into a deep pool
Drop impacts (onto dry or wet surfaces or into deep pools) are important in a wide range of applications, and, consequently, many studies, both experimental and numerical, are available in the literature. However, such works are focused either on statistical analyses of drop populations or on single drops. The literature is heavily lacking in information about the mutual interactions between a few drops during the impact. This work describes a computational fluid dynamics (CFD) study on the impact of two, three, and four synchronized drops into a deep pool. The two-phase finite-volume solver interFoam of the open source CFD package OpenFOAM® was used. After validation with respect to high speed videos, to confirm the performance of the solver in this field, impact conditions and aspects that would have been difficult to obtain and to study in experiments were investigated: namely, the energy conversion during the crater evolution, the effect of varying drop interspace and surface tension, and multiple drop impacts. The results show the very significant effect of these aspects. This implies that an extension of the results of single-drop, distilled-water laboratory experiments to real applications may not be reliable
Numerical simulation of oil-water two-phase flow in a horizontal duct with a Venturi flow meter
The progressive depletion of on-shore and light-oil reserves is forcing an increased use of transitional and heavy oils, which implies new challenges both during the extraction and the transportation. Focusing on the latter, a technique to reduce the pressure drop is water injection in the oil stream to create the so-called core annular flow (CAF), a flow regime with an oil core enveloped in a water annulus wetting the pipe wall, so that the apparent viscosity of the mixture is considerably reduced. Behaviour of CAF in ducts with non-uniform sections is still under research. This work is devoted to a CFD investigation about the pressure drop, pressure gradients, velocity profiles and in situ volume fractions in a duct including a Venturi flow meter. Unsteady RANS simulations were carried out using the Volume-Of-Fluid interFoam solver of OpenFOAM. Numerical results were experimentally validated for oil superficial velocities in the range 0.25-0.75 m/s and water superficial velocities in the range 0.44-1.10 m/s and comparisons between different approaches and sensitivity analyses were performed. Satisfactory agreement was found for the pressure drop and pressure gradients, and also for the in situ volume fraction with respect to the predictions of the Arney correlation
Modeling of Indirect Evaporative Cooling Systems: A Review
Air-to-air indirect evaporative cooling (IEC) systems are particular heat exchangers that use the latent heat of evaporation of water to cool down an air stream, without increasing its specific humidity, thus guaranteeing adequate thermohygrometric conditions in the refrigerated environment with low energy consumption. Dew-point indirect evaporative cooling (DIEC) systems are based on the IEC technology, but they recirculate a part of the air taken from the room to be refrigerated, in order to possibly achieve a lower air temperature. IEC and DIEC systems are becoming increasingly common these years, as they can ensure a good efficiency, minimizing the environmental impact of the air-conditioning system. Consequently, it has been necessary to develop models, both analytical and numerical, to quickly and accurately design this type of system and to predict their performance. This paper presents a review of the analytical and numerical models developed specifically for IEC and DIEC systems, highlighting their method, main innovations and advantages, and possible limitations. From this analysis, it emerged that analytical models have been developed since the late 1990s and only few of them are suitable for DIEC heat exchangers, while numerical models for both IEC and DIEC systems are gaining popularity in recent years. Almost all the analyzed models have been validated by comparison with numerical and/or experimental data, showing a maximum discrepancy within 10% in the majority of the cases. However, the validations were performed for a few specific cases, so in real applications it might be difficult to associate the model boundary conditions and the heat exchangers operating conditions, such as nozzles orientations, plates materials, water flow rates, and configurations. Another common limitation concerns the modeling of some properties, as wettability factor and air density, which might affect the accuracy of the results
Experimental Characterization of the Wettability of Coated and Uncoated Plates for Indirect Evaporative Cooling Systems
Indirect Evaporative Cooling (IEC) is a very promising technology to substitute and/or integrate traditional air conditioning systems, due to its ability to provide cooling capacity with limited power consumption. Literature studies proved that a higher wettability of the IEC plates corresponds to better performance of the system. In this work, wettability of three different surfaces used for IEC systems plates—uncoated aluminum alloy (AL), standard epoxy coating (STD), and a hydrophilic lacquer (HPHI)—is studied and characterized in terms of static and dynamic contact angles. The static contact angle resulted to be the lowest for the HPHI surface (average 69°), intermediate for the STD surface (average 75°), and the highest for the AL surface (average 89°). The analysis of the dynamic contact angles showed that their transient behavior is similar for all the surfaces, and the advancing and receding contact angles obtained are consistent with the results of the static analysis. These results will be useful as input parameters in models aimed at predicting the IEC system performance, also using computational fluid dynamics
Characterization of plug and slug multiphase flows by means of image analysis
Multiphase flow is involved in a wide range of applications, and among the flow patterns that a multiphase mixture may develop in its flow, the intermittent one is particularly complex both in behaviour and for analysis. Experimental analysis about the characteristics of the flow structures (plugs and slugs) is therefore still mandatory for a detailed description of the phenomenon. In this work an image-based technique for the determination of the plug/slug characteristics was applied to air-water, oil-air and three-phase oil-water-air flows in horizontal ducts with different diameters, with superficial velocities of the phases in the range 0.2-2.1 m/s. The technique is based on the acquisition of a video of the flow and the conversion of each frame (or part of it) into a Boolean signal, in which the non-zero part represents the structure of interest. Concatenation of such signals along the singleton dimension creates a space-time representation of the flow, from which information about the flow velocities, the structure lengths and frequencies and the void fraction can be extracted. Focus here is particularly on the performances of the technique when using high-speed videos. The results were also compared with the predictions of the drift-flux model
Characterization of highly hydrophobic textiles by means of X-ray microtomography, wettability analysis and drop impact
Highly hydrophobic surfaces have been intensively investigated in the last years because their properties may lead to very promising technological spillovers encompassing both everyday use and high-tech fields. Focusing on textiles, hydrophobic fabrics are of major interest for applications ranging from clothes to architecture to environment protection and energy conversion. Gas diffusion media - made by a gas diffusion layer (GDL) and a microporous layer (MPL) - for fuel cells are a good benchmark to develop techniques aimed at characterizing the wetting performances of engineered textiles. An experimental investigation was carried out about carbon-based, PTFE-treated GDLs with and without MPLs. Two samples (woven and woven-non-woven) were analysed before and after coating with a MPL. Their three-dimensional structure was reconstructed and analysed by computer-aided X-ray microtomography (CT). Static and dynamic wettability analyses were then carried out using a modified axisymmetric drop shape analysis technique. All the surfaces exhibited very high hydrophobicity, three of them near to a super-hydrophobic behavior. Water drop impacts were performed, evidencing different bouncing, sticking and fragmentation outcomes for which critical values of the Weber number were identified. Finally, a CT scan of a drop on a GDL was performed, confirming the Cassie-Baxter wetting state on such surface
Water holdup estimation from pressure drop measurements in oil-water two-phase flows by means of the two-fluid model
The Two-Fluid Model (TFM) has been applied to determine water holdup from pressure drop measurements for core-annular flows in horizontal pipes. The fluids are Milpar 220 oil (Ïo=890 kg/m3, μo=0.832 Paâ¢s at 20 °C) and tap water (μw=1.026Ã10-3 Paâ¢s at 20°C). The investigated volume flow rates range from 2 to 6 m3/h, for water, and from 1 to 3.5 m3/h, for oil, respectively. The results are in very good agreement with available experimental data from the literature and a simple correlation between water holdup and water input fraction has been benchmarked to the overall data set. Eventually, the TFM endowed with the holdup correlation has been adopted to predict the pressure drop with quite satisfactory results: 98% of data fall within a percentage error of ±10%, 99% of the data fall within ±15%, and all the data are predicted within ±20%. On the other hand, the mean absolute relative error for the pressure drop reduction factor is 5.5%
Ecosistemi di acque interne e di transizione
In questo contributo la vulnerabilità degli ecosistemi acquatici ai cambiamenti climatici è analizzata in relazione ai meccanismi di organizzazione e mantenimento della biodiversità e dei processi ecosistemici. Dai processi degli ecosistemi derivano funzioni che forniscono una serie di benefici o servizi per il genere umano (Daily et al., 2009). Tali servizi sono in larga misura
dipendenti dalle componenti biologiche degli ecosistemi86. Negli ecosistemi acquatici i processi biogeochimici (ad es. denitrificazione batterica e assimilazione da parte della vegetazione acquatica), garantiscono l’abbattimento dei nutrienti, una funzione ecosistemica che produce il servizio di depurazione dell’acqua. Altri servizi sono la laminazione delle piene, la ricarica degli acquiferi, la regolazione del microclima locale, la produzione di risorse alimentari quali pesci, crostacei, ecc. (Jones, 2013). Le alterazioni degli ecosistemi, in particolare la perdita di specie e la diminuzione della biodiversità danneggiano questi servizi, con ricadute anche di tipo economico(si pensi, ad esempio, ai costi della depurazione dell’acqua destinata al consumo umano)
- …