121 research outputs found
BLM (Bloom)
Review on BLM (Bloom), with data on DNA, on the protein encoded, and where the gene is implicated
Tunneling Time Distribution by means of Nelson's Quantum Mechanics and Wave-Particle Duality
We calculate a tunneling time distribution by means of Nelson's quantum
mechanics and investigate its statistical properties. The relationship between
the average and deviation of tunneling time suggests the exsistence of
``wave-particle duality'' in the tunneling phenomena.Comment: 14 pages including 11 figures, the text has been revise
Possibility of the tunneling time determination
We show that it is impossible to determine the time a tunneling particle
spends under the barrier. However, it is possible to determine the asymptotic
time, i.e., the time the particle spends in a large area including the barrier.
We propose a model of time measurements. The model provides a procedure for
calculation of the asymptotic tunneling and reflection times. The model also
demonstrates the impossibility of determination of the time the tunneling
particle spends under the barrier. Examples for delta-form and rectangular
barrier illustrate the obtained results.Comment: 8 figure
Phonon-Coupled Electron Tunneling in Two and Three-Dimensional Tunneling Configurations
We treat a tunneling electron coupled to acoustical phonons through a
realistic electron phonon interaction: deformation potential and piezoelectric,
in two or three-dimensional tunneling configurations. Making use of slowness of
the phonon system compared to electron tunneling, and using a Green function
method for imaginary time, we are able to calculate the change in the
transition probability due to the coupling to phonons. It is shown using
standard renormalization procedure that, contrary to the one-dimensional case,
second order perturbation theory is sufficient in order to treat the
deformation potential coupling, which leads to a small correction to the
transmission coefficient prefactor. In the case of piezoelectric coupling,
which is found to be closely related to the piezoelectric polaron problem,
vertex corrections need to be considered. Summing leading logarithmic terms, we
show that the piezoelectric coupling leads to a significant change of the
transmission coefficient.Comment: 17 pages, 4 figure
(1R,6R,13R,18R)-(Z,Z)-1,18-Bis[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-3,16-dimethylÂene-8,20-diazaÂdispiroÂ[5.6.5.6]tetraÂcosa-7,19-diene
The crystal structure of the title compound, C34H54N2O4, has been solved in order to prove the relative and absolute chirality of the newly-formed stereocentres which were established using an asymmetric Diels–Alder reaction at an earlier stage in the synthesis. This unprecedented stable dialdimine contains a 14-membered ring and was obtained as the minor diastereoisomer in the Diels–Alder reaction. The absolute stereochemistry of the stereocentres of the acetal functionality was known to be R based on the use of a chiral (R)-trisÂubstituted dienophile derived from enantiÂopure (S)-glyceraldehyde. The assignment of the configuration in the dienophile and the title di-aldimine differs from (S)-glyceraldehyde due to a change in the priority order of the substituents. The crystal structure establishes the presence of six stereocentres all attributed to be R. The 14-membered ring contains two aldimine bonds [C—N = 1.258 (2) and 1.259 (2) Å]. It adopts a similar conformation to that proposed for trans–trans-cycloÂtetraÂdeca-1,8-dienes
Current-voltage characteristic and stability in resonant-tunneling n-doped semiconductor superlattices
We review the occurrence of electric-field domains in doped superlattices
within a discrete drift model. A complete analysis of the construction and
stability of stationary field profiles having two domains is carried out. As a
consequence, we can provide a simple analytical estimation for the doping
density above which stable stable domains occur. This bound may be useful for
the design of superlattices exhibiting self-sustained current oscillations.
Furthermore we explain why stable domains occur in superlattices in contrast to
the usual Gunn diode.Comment: Tex file and 3 postscript figure
- …