99 research outputs found

    Pore wall corrugation effect on the dynamics of adsorbed H 2 studied by in situ quasi elastic neutron scattering Observation of two timescaled diffusion

    Get PDF
    The self diffusion mechanisms for adsorbed H2 in different porous structures are investigated with in situ quasi elastic neutron scattering method at a temperature range from 50 K to 100 K and at various H2 loadings. The porous structures of the carbon materials have been characterized by sorption analysis with four different gases and the results are correlated with previous in depth analysis with small angle neutron scattering method. Thus, an investigation discussing the effect of pore shape and size on the nature of adsorbed H2 self diffusion is performed. It is shown that H2 adsorbed in nanometer scale pores is self diffusing in two distinguishable timescales. The effect of the pore, pore wall shape and corrugation on the fraction of confined and more mobile H2 is determined and analyzed. The increased corrugation of the pore walls is shown to have a stronger confining effect on the H2 motions. The difference of self diffusional properties of the two H2 components are shown to be smaller when adsorbed in smoother walled pores. This is attributed to the pore wall corrugation effect on the homogeneity of formed adsorbed layer

    Systemic hematogenous maintenance of memory inflation by MCMV infection.

    Get PDF
    Several low-grade persistent viral infections induce and sustain very large numbers of virus-specific effector T cells. This was first described as a response to cytomegalovirus (CMV), a herpesvirus that establishes a life-long persistent/latent infection, and sustains the largest known effector T cell populations in healthy people. These T cells remain functional and traffic systemically, which has led to the recent exploration of CMV as a persistent vaccine vector. However, the maintenance of this remarkable response is not understood. Current models propose that reservoirs of viral antigen and/or latently infected cells in lymph nodes stimulate T cell proliferation and effector differentiation, followed by migration of progeny to non-lymphoid tissues where they control CMV reactivation. We tested this model using murine CMV (MCMV), a natural mouse pathogen and homologue of human CMV (HCMV). While T cells within draining lymph nodes divided at a higher rate than cells elsewhere, antigen-dependent proliferation of MCMV-specific effector T cells was observed systemically. Strikingly, inhibition of T cell egress from lymph nodes failed to eliminate systemic T cell division, and did not prevent the maintenance of the inflationary populations. In fact, we found that the vast majority of inflationary cells, including most cells undergoing antigen-driven division, had not migrated into the parenchyma of non-lymphoid tissues but were instead exposed to the blood supply. Indeed, the immunodominance and effector phenotype of inflationary cells, both of which are primary hallmarks of memory inflation, were largely confined to blood-localized T cells. Together these results support a new model of MCMV-driven memory inflation in which most immune surveillance occurs in circulation, and in which most inflationary effector T cells are produced in response to viral antigen presented by cells that are accessible to the blood supply

    Evidence that the Human Pathogenic Fungus Cryptococcus neoformans var. grubii May Have Evolved in Africa

    Get PDF
    Most of the species of fungi that cause disease in mammals, including Cryptococcus neoformans var. grubii (serotype A), are exogenous and non-contagious. Cryptococcus neoformans var. grubii is associated worldwide with avian and arboreal habitats. This airborne, opportunistic pathogen is profoundly neurotropic and the leading cause of fungal meningitis. Patients with HIV/AIDS have been ravaged by cryptococcosis – an estimated one million new cases occur each year, and mortality approaches 50%. Using phylogenetic and population genetic analyses, we present evidence that C. neoformans var. grubii may have evolved from a diverse population in southern Africa. Our ecological studies support the hypothesis that a few of these strains acquired a new environmental reservoir, the excreta of feral pigeons (Columba livia), and were globally dispersed by the migration of birds and humans. This investigation also discovered a novel arboreal reservoir for highly diverse strains of C. neoformans var. grubii that are restricted to southern Africa, the mopane tree (Colophospermum mopane). This finding may have significant public health implications because these primal strains have optimal potential for evolution and because mopane trees contribute to the local economy as a source of timber, folkloric remedies and the edible mopane worm

    Low diversity Cryptococcus neoformans variety grubii multilocus sequence types from Thailand are consistent with an ancestral African origin.

    Get PDF
    Published versio

    The Range of Possible Observations

    No full text

    Nanoscale Dynamics and Transport in Highly Ordered Low Dimensional Water

    No full text
    Highly ordered and highly cooperative water with properties of both solid and liquid states has been observed by means of neutron scattering in hydrophobic one dimensional channels with van der Waals diameter of 0.78 nm. We have found that in initial stages of adsorption water molecules occupy niches close to pore walls, followed later by the filling of the central pore area. Intensified by confinement intermolecular water interactions lead to the formation of well ordered hydrogen bonded water chains and to the onset of cooperative vibrations. On the other hand, the same intermolecular interactions lead to two relaxation processes, the faster of which is the spontaneous position exchange between two water molecules placed at 3.2 4 from each other. Self diffusion in an axial pore direction is the result of those spontaneous random exchanges and is substantially slower than the self diffusion in bulk wate
    • …
    corecore