43 research outputs found

    Spatial abundance and human biting rate of Anopheles arabiensis and Anopheles funestus in savannah and rice agro-ecosystems of Central Tanzania

    No full text
    This study was carried out to determine the spatial variations in malaria mosquito abundance and human biting rate in five villages representing rice-irrigation and savannah ecosystems in Kilosa District, central Tanzania. The study involved five villages namely Tindiga and Malui (wetland/rice irrigation), Twatwatwa and Mbwade (dry savannah) and Kimamba (wet savannah). Indoor mosquitoes were sampled using Centers for Disease Control and Prevention light traps in three houses in each village. Anopheles gambiae s.l. molecular identification was carried out using polymerase chain reaction (PCR). A total of 936 female mosquitoes were collected. About half (46.9%) were malaria mosquitoes (Anopheles gambiae s.l.=28.6%; An. funestus= 18.3%). A total of 161 (60.1%) of the morphologically identified An. gambiae s.l. (268) and subjected to PCR analysis for speciation were genotyped as An. arabiensis. The An. funestus complex mosquitoes were composed of An. funestus funestus and An. rivulorum at the 5:1 ratio. On average, 17.9 Anopheles mosquitoes were collected per village per day. Two-thirds (62.8%) of the malaria mosquitoes were collected in Malui (rice agro-ecosystem) and the lowest number (2.3%) in Twatwatwa (dry savannah ecosystem). The biting rate per person per night for An. arabiensis+An. funestus s.s. was highest in Malui (46.0) and lowest in Twatwatwa (1.67). The parity rate of the An. funestus mosquitoes was lower compared to that of An. arabiensis and none of the mosquitoes was infected with malaria sporozoites. In conclusion, An. arabiensis is the most abundant malaria vector in Kilosa district and its variation is related to the ecological system. The heterogeneity in malaria mosquito abundance and human biting rate could be used to guide selection of locally appropriated control interventions

    Malaria, anaemia and nutritional status among schoolchildren in relation to ecosystems, livelihoods and health systems in Kilosa district in central Tanzania

    No full text
    Research articleBackground: Malaria prevalence and transmission intensity in Tanzania is heterogeneous with spatial and temporal variations between geographical areas and ecological systems. The objective of this study was to determine the prevalence of malaria, anaemia and nutritional status in relation to livelihoods, ecosystem and health systems in Kilosa District in central Tanzania. Methods: This study was conducted in four villages, two characterised by rice irrigation ecosystem and the other two by dry savannah ecosystem and pastoral livelihoods. In each ecosystem, one of the villages had a healthcare facility. Schoolchildren were screened for malaria infection using malaria rapid diagnostic test (mRDT) and microscopy and they were assessed for their anaemia and nutritional statuses. Results: A total of 1,019 school children (age = 4–16 years) were screened for malaria infection. The overall prevalence of Plasmodium falciparum infection was 10.6 % and 4.5 % by mRDT and microscopy, respectively. Children from pastoral villages had lower (2.9 %) prevalence of malaria than their counterparts (18.2 %) in the rice irrigation villages. A significantly high risk of malaria was observed among children in rice irrigation than in the pastoral ecosystem (OR: 0.13; 95%CI 0.07, 0.23). Children living in areas with health care facilities had a low odd of malaria infection by 45 % (OR: 0.55; 95 % CI = 0.35, 0.86). Overall, the prevalence of anaemia in the district was 43.4 % (n = 775); and 58.3 % of those with severe anaemia were among children from the pastoral villages. Anaemia was significantly higher among children not using mosquito nets (p = 0.049); and among those with malaria infection (p <0.001). The majority (96 %) of the children had Body Mass Index less than 18.5 kg/m2 which indicate high proportion of underweight. Conclusion: There are significant variations in the risk of acquiring malaria infection between different ecosystems and livelihoods. These findings suggest that malaria control programmes must take into account ecosystems and livelihoods of the targeted population through an integrated management of malaria and nutrition approach.International Development Research Centre of Canad

    Malaria, anaemia and nutritional status among schoolchildren in relation to ecosystems, livelihoods and health systems in Kilosa district in central Tanzania

    No full text
    Research articleBackground: Malaria prevalence and transmission intensity in Tanzania is heterogeneous with spatial and temporal variations between geographical areas and ecological systems. The objective of this study was to determine the prevalence of malaria, anaemia and nutritional status in relation to livelihoods, ecosystem and health systems in Kilosa District in central Tanzania. Methods: This study was conducted in four villages, two characterised by rice irrigation ecosystem and the other two by dry savannah ecosystem and pastoral livelihoods. In each ecosystem, one of the villages had a healthcare facility. Schoolchildren were screened for malaria infection using malaria rapid diagnostic test (mRDT) and microscopy and they were assessed for their anaemia and nutritional statuses. Results: A total of 1,019 school children (age = 4–16 years) were screened for malaria infection. The overall prevalence of Plasmodium falciparum infection was 10.6 % and 4.5 % by mRDT and microscopy, respectively. Children from pastoral villages had lower (2.9 %) prevalence of malaria than their counterparts (18.2 %) in the rice irrigation villages. A significantly high risk of malaria was observed among children in rice irrigation than in the pastoral ecosystem (OR: 0.13; 95%CI 0.07, 0.23). Children living in areas with health care facilities had a low odd of malaria infection by 45 % (OR: 0.55; 95 % CI = 0.35, 0.86). Overall, the prevalence of anaemia in the district was 43.4 % (n = 775); and 58.3 % of those with severe anaemia were among children from the pastoral villages. Anaemia was significantly higher among children not using mosquito nets (p = 0.049); and among those with malaria infection (p <0.001). The majority (96 %) of the children had Body Mass Index less than 18.5 kg/m2 which indicate high proportion of underweight. Conclusion: There are significant variations in the risk of acquiring malaria infection between different ecosystems and livelihoods. These findings suggest that malaria control programmes must take into account ecosystems and livelihoods of the targeted population through an integrated management of malaria and nutrition approach.International Development Research Centre of Canad

    Lymphatic filariasis transmission on Mafia Islands, Tanzania: Evidence from xenomonitoring in mosquito vectors.

    No full text
    Lymphatic filariasis (LF) is a chronic nematode infection transmitted by mosquitoes and in sub-Saharan Africa it is caused by Wuchereria bancrofti. The disease was targeted for global elimination by 2020 using repeated community-wide mass drug administration (MDA) distributed in endemic areas. However, recently, there has been a growing recognition of the potential role of including vector control as a supplement to MDA to achieve elimination goal. This study was carried out to determine mosquito abundance and transmission of bancroftian filariasis on Mafia Islands in Tanzania as a prerequisite for a search for appropriate vector control methods to complement the ongoing MDA campaign.Mosquitoes were collected indoor and outdoor using Centre for Disease Control (CDC) light and gravid traps, respectively. Collected mosquitoes were identified based on their differential morphological features and Anopheles gambiae complex and An. funestus group were further identified to their respective sibling species by polymerase chain reaction (PCR). Filarial mosquito vectors were then examined for infection with Wuchereria bancrofti by microscopy and PCR technique.Overall, a total of 35,534 filarial mosquito vectors were collected, of which Anopheles gambiae complex, An. funestus group and Culex quinquefasciatus Say accounted for 1.3, 0.5 and 98.2%, respectively. Based on PCR identification, An. gambiae sensu stricto (s.s) and An. funestus s.s sibling species accounted for 88.3% and 99.1% of the identified members of the An. gambiae complex and An. funestus group, respectively. A total of 7,936 mosquitoes were examined for infection with W. bancrofti by microscopy. The infection and infectivity rates were 0.25% and 0.08%, respectively. Using pool screen PCR technique, analysis of 324 mosquito pools (each with 25 mosquitoes) resulted to an estimated infection rate of 1.7%.The study has shown that Cx. quinquefasciatus is the dominant mosquito on Mafia Islands. By using mosquito infectivity as proxy to human infection, the study indicates that W. bancrofti transmission is still ongoing on Mafia Islands after more than a decade of control activities based on MDA
    corecore