821 research outputs found

    Efficient Localization of Discontinuities in Complex Computational Simulations

    Full text link
    Surrogate models for computational simulations are input-output approximations that allow computationally intensive analyses, such as uncertainty propagation and inference, to be performed efficiently. When a simulation output does not depend smoothly on its inputs, the error and convergence rate of many approximation methods deteriorate substantially. This paper details a method for efficiently localizing discontinuities in the input parameter domain, so that the model output can be approximated as a piecewise smooth function. The approach comprises an initialization phase, which uses polynomial annihilation to assign function values to different regions and thus seed an automated labeling procedure, followed by a refinement phase that adaptively updates a kernel support vector machine representation of the separating surface via active learning. The overall approach avoids structured grids and exploits any available simplicity in the geometry of the separating surface, thus reducing the number of model evaluations required to localize the discontinuity. The method is illustrated on examples of up to eleven dimensions, including algebraic models and ODE/PDE systems, and demonstrates improved scaling and efficiency over other discontinuity localization approaches

    Optical microsphere resonators: optimal coupling to high-Q whispering gallery modes

    Full text link
    A general model is presented for coupling of high-QQ whispering-gallery modes in optical microsphere resonators with coupler devices possessing discrete and continuous spectrum of propagating modes. By contrast to conventional high-Q optical cavities, in microspheres independence of high intrinsic quality-factor and controllable parameters of coupling via evanescent field offer variety of regimes earlier available in RF devices. The theory is applied to the earlier-reported data on different types of couplers to microsphere resonators and complemented by experimental demonstration of enhanced coupling efficiency (about 80%) and variable loading regimes with Q>10^8 fused silica microspheres.Comment: 14 pages, 4 figure

    A continuous analogue of the tensor-train decomposition

    Full text link
    We develop new approximation algorithms and data structures for representing and computing with multivariate functions using the functional tensor-train (FT), a continuous extension of the tensor-train (TT) decomposition. The FT represents functions using a tensor-train ansatz by replacing the three-dimensional TT cores with univariate matrix-valued functions. The main contribution of this paper is a framework to compute the FT that employs adaptive approximations of univariate fibers, and that is not tied to any tensorized discretization. The algorithm can be coupled with any univariate linear or nonlinear approximation procedure. We demonstrate that this approach can generate multivariate function approximations that are several orders of magnitude more accurate, for the same cost, than those based on the conventional approach of compressing the coefficient tensor of a tensor-product basis. Our approach is in the spirit of other continuous computation packages such as Chebfun, and yields an algorithm which requires the computation of "continuous" matrix factorizations such as the LU and QR decompositions of vector-valued functions. To support these developments, we describe continuous versions of an approximate maximum-volume cross approximation algorithm and of a rounding algorithm that re-approximates an FT by one of lower ranks. We demonstrate that our technique improves accuracy and robustness, compared to TT and quantics-TT approaches with fixed parameterizations, of high-dimensional integration, differentiation, and approximation of functions with local features such as discontinuities and other nonlinearities

    Mid-Infrared ultra-high-Q resonators based on fluoride crystalline materials

    Full text link
    Decades ago, the losses of glasses in the near infrared (near-IR) were investigated in views of developments for optical telecommunications. Today, properties in the mid-infrared (mid-IR) are of interest for molecular spectroscopy applications. In particular, high-sensitivity spectroscopic techniques based on high-finesse mid-IR cavities hold high promise for medical applications. Due to exceptional purity and low losses, whispering gallery mode microresonators based on polished alkaline earth metal fluoride crystals (i.e the XF2\mathrm{XF_2} family, where X == Ca, Mg, Ba, Sr,...) have attained ultra-high quality (Q) factor resonances (Q>>108^{8}) in the near-IR and visible spectral ranges. Here we report for the first time ultra-high Q factors in the mid-IR using crystalline microresonators. Using an uncoated chalcogenide (ChG) tapered fiber, light from a continuous wave quantum cascade laser (QCL) is efficiently coupled to several crystalline microresonators at 4.4 μ\mum wavelength. We measure the optical Q factor of fluoride crystals in the mid-IR using cavity ringdown technique. We observe that MgF2\mathrm{MgF_2} microresonators feature quality factors that are very close to the fundamental absorption limit, as caused by the crystal's multiphonon absorption (Q∼\sim107^{7}), in contrast to near-IR measurements far away from these fundamental limits. Due to lower multiphonon absorption in BaF2\mathrm{BaF_2} and SrF2\mathrm{SrF_2}, we show that ultra-high quality factors of Q ⩾\geqslant 1.4 ×108\times 10^{8} can be reached at 4.4 μ\mum. This corresponds to an optical finesse of F>\mathcal{F}>4⋅\cdot 104^{4}, the highest value achieved for any type of mid-IR resonator to date, and a more than 10-fold improvement over the state-of-the-art. Such compact ultra-high Q crystalline microresonators provide a route for narrow linewidth frequency-stabilized QCL or mid-IR Kerr comb generation.Comment: C. Lecaplain and C. Javerzac-Galy contributed equally to this wor

    Frequency combs and platicons in optical microresonators with normal GVD

    Full text link
    We predict the existence of a novel type of the flat-top dissipative solitonic pulses, "platicons", in microresonators with normal group velocity dispersion (GVD). We propose methods to generate these platicons from cw pump. Their duration may be altered significantly by tuning the pump frequency. The transformation of a discrete energy spectrum of dark solitons of the Lugiato-Lefever equation into a quasicontinuous spectrum of platicons is demonstrated. Generation of similar structures is also possible with bi-harmonic, phase/amplitude modulated pump or via laser injection locking.Comment: 9 pages, 6 figure

    Octave Spanning Frequency Comb on a Chip

    Full text link
    Optical frequency combs have revolutionized the field of frequency metrology within the last decade and have become enabling tools for atomic clocks, gas sensing and astrophysical spectrometer calibration. The rapidly increasing number of applications has heightened interest in more compact comb generators. Optical microresonator based comb generators bear promise in this regard. Critical to their future use as 'frequency markers', is however the absolute frequency stabilization of the optical comb spectrum. A powerful technique for this stabilization is self-referencing, which requires a spectrum that spans a full octave, i.e. a factor of two in frequency. In the case of mode locked lasers, overcoming the limited bandwidth has become possible only with the advent of photonic crystal fibres for supercontinuum generation. Here, we report for the first time the generation of an octave-spanning frequency comb directly from a toroidal microresonator on a silicon chip. The comb spectrum covers the wavelength range from 990 nm to 2170 nm and is retrieved from a continuous wave laser interacting with the modes of an ultra high Q microresonator, without relying on external broadening. Full tunability of the generated frequency comb over a bandwidth exceeding an entire free spectral range is demonstrated. This allows positioning of a frequency comb mode to any desired frequency within the comb bandwidth. The ability to derive octave spanning spectra from microresonator comb generators represents a key step towards achieving a radio-frequency to optical link on a chip, which could unify the fields of metrology with micro- and nano-photonics and enable entirely new devices that bring frequency metrology into a chip scale setting for compact applications such as space based optical clocks
    • …
    corecore