9 research outputs found
Governing Ecological Connectivity in Cross-Scale Dependent Systems.
Ecosystem management and governance of cross-scale dependent systems require integrating knowledge about ecological connectivity in its multiple forms and scales. Although scientists, managers, and policymakers are increasingly recognizing the importance of connectivity, governmental organizations may not be currently equipped to manage ecosystems with strong cross-boundary dependencies. Managing the different aspects of connectivity requires building social connectivity to increase the flow of information, as well as the capacity to coordinate planning, funding, and actions among both formal and informal governance bodies. We use estuaries in particular the San Francisco Estuary, in California, in the United States, as examples of cross-scale dependent systems affected by many intertwined aspects of connectivity. We describe the different types of estuarine connectivity observed in both natural and human-affected states and discuss the human dimensions of restoring beneficial physical and ecological processes. Finally, we provide recommendations for policy, practice, and research on how to restore functional connectivity to estuaries
Vegetation refugia can inform climate-adaptive land management under global warming
Natural resource managers need information about the risks associated with climate change to provide guidance on where to implement various management practices on natural lands. The spatial variation of projected impacts within a vegetation type can be used to target climate-adaptive management actions because different locations will be exposed to different levels of climatic stress. Vegetation refugia are areas that retain non-stressful climate conditions under future climates. Consensus vegetation refugia – areas retaining suitable climates under both wetter and drier future projections – represent only 14.6% of California's natural vegetation. One state and one federal government agency have incorporated vegetation refugia maps into conservation planning for 522 vertebrate species and for post-wildfire reforestation. Monitoring how vegetation responds to management actions at sites within vegetation refugia can improve the conservation of plants subjected to a changing climate
Recommended from our members
The influence of model frameworks in spatial planning of regional climate-adaptive connectivity for conservation planning
Landscape connectivity improves species’ capacity to adapt to climate change. These models are increasingly needed and available for climate-change conservation planning. However, their relative strengths and weaknesses are unclear. We asked how well do the spatial outputs from four connectivity models intended to support climate change conservation agree? To understand the implications of selecting one or several approaches, we compared various combinations of four connectivity models for ecoregions in California, U.S.A. Two models are based on landscape structure, Land Facet Corridors and Omniscape, while two other models, Meta-Corridor Approach and Network Flow Analysis (NFA), use focal species’ range dynamics to determine connectivity. We also describe how each approach integrates climate-adaptive connectivity concepts. Variation in modeling methods, objectives, inputs, and landscape representations strongly affects the modeled connectivity patterns. For the region where all four models were run, almost three quarters of the landscape was selected by one or more models, but three or more agree for only 9.5% of the area, all of which is riparian. This emphasizes the importance of riparian areas for climate adaptation. We found NFA prioritized connections close to protected areas, while Meta-Corridor avoided higher cost agricultural and developed areas. The structural models agreed in areas with low human impact but Omniscape avoided areas of low topographic diversity and Land Facet Corridors avoided connections in areas with no protected areas. Connectivity models should be selected based on the conservation objectives, such as spatial scale to be implemented, and a combination of models may be best