23 research outputs found

    Interactions of nanorod particles in the strong coupling regime

    Full text link
    The plasmon coupling in a nanorod dimer obeys the exponential size dependence according to the Universal Plasmon Ruler Equation. However, it was shown recently that such a model does not hold at short nanorod distance (Nano Lett. 2009, 9, 1651). Here we study the nanorod coupling in various cases, including nanorod dimer with the asymmetrical lengths and symmetrical dimer with the varying gap width. The asymmetrical nanorod dimer causes two plasmon modes: one is the attractive lower- energy mode and the other the repulsive high-energy mode. Using a simple coupled LC-resonator model, the position of dimer resonance has been determined analytically. Moreover, we found that the plasmon coupling of symmetrical cylindrical (or rectangular) nanorod dimer is governed uniquely by gap width scaled for the (effective) rod radius rather than for the rod length. A new Plasmon Ruler Equation without using the fitting parameters has been proposed, which agrees well with the FDTD calculations. The method has also been extended to study the plasmonic wave-guiding in a linear chain of gold nanorod particles. A field decay length up to 2700nm with the lateral mode size about 50nm (~wavelength/28) has been suggested.Comment: 31 pages, 6 figures, 58 reference
    corecore