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Abstract

We present a review of plasmonic nanostructures in which the constituent materials are coupled together by
optical interactions. The review first provides a comprehensive coverage of theoretical framework where the optical
interactions are described by the multiple scattering among the nanostructures. We then discuss the two limiting
cases of weak and strong interactions. The weak interaction regime is described well by the effective medium
theory while the strong interaction regime requires theoretical tools that can describe the new eigenmodes
delocalized over the entire system. Weakly interacting plasmonic nanostructures have been studied extensively in
the metamaterials research, which has been a major research thrust in photonics during the past decade. This
review covers some of the latest examples exhibiting perfect absorption and invisibility. Strongly coupled systems
started to receive attention recently. As a representative example, plasmonic molecules exhibiting Fano resonance

are discussed in detail. Plasmonic nanostructures offer an excellent platform to engineer nanoscale optical fields.
With the recent progress in nanofabrication technologies, plasmonic nanostructures offer a highly promising
pathway to discovering new phenomena and developing novel optical devices.

1 Introduction

In the Drude theory, metal is modeled as a system of
free electron gas undergoing forced oscillation with
some damping. Other than some notable exceptions such
as the strong interband absorption involving the d band in
transition metals, the Drude model generally provides
good descriptions of the optical properties of metals. It
predicts that in the low frequency region the induced
polarization oscillates 180° out-of-phase with the external
field, resulting in negative permittivity and consequently
high reflectivity. At certain frequencies, the electron gas
can also undergo collective oscillations whose quantum is
called plasmon. The collective oscillation may involve vol-
ume charge density (volume plasmon) or surface charge
density (surface plasmon). Volume plasmons are longitu-
dinal oscillations and cannot be excited by electromagnetic
waves which are normally transverse. Surface plasmons,
however, interact strongly with light. By storing a significant
portion of its energy in oscillating electron gas, surface
plasmon offers an effective means to localize light down
to length scales much smaller than wavelength. For this
reason, the past decades have seen an explosive growth
in research on surface plasmon nanophotonics.
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One of the topics of high interest is nanoscale waveguid-
ing with potential applications in integrated photonics for
which a large body of literature exists [1]. Another import-
ant class of plasmonic nanostructures more relevant to
this review are those supporting localized surface plasmon
(LSP) modes. These structures include metal nanoparti-
cles of various shapes, nanoholes in metal films, and some
variations of these. The LSP resonances typically manifest
themselves with strong scattering and absorption. The
characteristic color arising from the LSP resonances has
enabled a wide range of applications from the medieval
stained glasses to modern optical sensors. For example, col-
orimetric sensing of biomolecules and ions has been dem-
onstrated [2,3]. Also, strongly scattering nanoparticles have
been used to enhance contrast in dark-field microscopy
and optical coherence tomography [4] while thermal abla-
tion sing strongly absorbing nanoparticles is being actively
developed for targeted therapies of various diseases [5,6].

LSP naturally provides a highly localized and intense
optical field which consequently enhances a variety of
optical processes. The best-known example is surface
enhanced Raman scattering (SERS). Using a rough sil-
ver surface, Raman scattering by a single molecule has
been observed with enhancements up to a factor of
10'* [7]. Much of the enhancement is believed to arise
from the local field enhancement due to the highly lo-
calized hot spots produced by the silver nanostructure
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[8]. Surface plasmon resonance can also be used to enhance
luminescence [9] and Forster energy transfer process
[10,11]. Since the optical processes depend on the local
field strength, strong emphasis has been placed on achiev-
ing higher local field enhancement using novel nanostruc-
ture geometries. These structures are generally termed
nano-antennas analogous to conventional antennas in the
microwave frequency region and have been the subject of
extensive research in the past decade [12]. Since hot spots
are typically formed in the nano-gap between plasmonic
nanoparticles, the nano-antenna research naturally directed
attention to the interaction between LSP modes, which is
the main subject of this review. An important recent devel-
opment in this field is the concept of plasmon hybridization
[13]. In this picture, the individual LSP modes in closely
spaced nanoparticles hybridize to form a set of new modes
delocalized over the entire structure, in much the same way
atomic orbitals hybridize to form molecular orbitals in real
molecules. For this reason, these plasmonic nanostructures
are also called plasmonic molecules. The hybridized modes
in plasmonic molecules have been extensively studied. The
simplest form of plasmonic molecule is a dimer or a pair
of nanoparticles in which the plasmon resonance of single
nanoparticle hybridizes to produce symmetric and anti-
symmetric dimer plasmons [14]. Hybridization in more
complex structures has also been studied, e.g. trimer [15],
quadrumer [16], hexamer [17] and most widely heptamer
[18-22]. In these complex structures, symmetry properties
of the hybridized plasmon modes should be described by
the group representation theory [23]. In this formalism,
how each plasmon mode transforms under the symmetry
operations is described by the irreducible representations
of the symmetry group. This allows for a systematic descrip-
tion of modes with complex field profiles and also their
interaction with incident optical fields, providing a complete
picture when combined with the numerical techniques that
can precisely calculate the hybridized LSP modes. It is noted
that the group theoretical approach classifying the sym-
metry properties of plasmon modes does not require any
approximations. For example, in nanostructures with fea-
tures sizes much smaller than the wavelength, the plasmon
modes exhibit predominantly electric dipole nature and are
often approximated as point dipoles. The group theoretical
approach, however, does not require dipole approximation
and is equally applicable to larger and more complex struc-
tures exhibiting higher order mulitpole components.

The strength and nature of the optical interaction be-
tween plasmonic nanostructures varies with the distance.
For long distances, the interaction is mainly radiative and
involves propagating electromagnetic waves undergoing
multiple scattering among the plasmonic nanostructures.
In this case, the original character of the individual LSP
modes should largely be preserved. For short distances,
evanescently decaying near-field components should be
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taken into account. In principle, the near-field inter-
action can be treated the same way as the far-field inter-
action in the general framework of multiple scattering
theory. That is, the evanescent modes undergo multiple
scattering between nanostructures as well as the propagat-
ing modes. In extreme short distances, where the individ-
ual LSP modes have significant overlaps with one another,
the near-field interaction will dominate and hybridization
resulting in fully delocalized modes would occur. This re-
view is aimed at providing a unified view of plasmonic
nanostructures in which the strength of the interaction
among individual metallic components is varied. We will
first present a theoretical framework followed by examples
of nanostructures and their optical properties in the weak
and strong coupling regimes.

2 Review

2.1 Theoretical framework

2.1.1 Classical description of surface plasmon resonance
Surface plasmon, while inherently a quantum mechanical
entity, is generally well described by the classical theory
where surface plasmon presents itself as a surface reson-
ance. There are of course quantum mechanical character-
istics that cannot be fully described by the classical theory
such as nonlocal response of electrons [24,25], tunneling
and screening effect [26], spontaneous and stimulated emis-
sion of photons [27] and plasmons [28,29], to name a few.
Nevertheless, the classical theory has proved sufficient for a
wide range of systems. The classical theory is based on the
Maxwell’s equations where the boundary conditions are set
up by the material properties specified by the macroscopic
permittivity and permeability. For the planar geometry, sur-
face wave solutions with fields decaying exponentially away
from the interfaces can be found. In the simplest example
of a single planar interface between semi-infinite metal and
dielectric, the surface wave vector, ¢, is given by the disper-
sion relation [30],
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where g, and &, are the permittivities of metal and dielectric
medium, respectively, and often Drude model is used for
the metal permittivity, & (0) =1+ wﬁ/ (w* + iyw) where
o, is the plasma frequency and y is the damping parameter.
This surface wave solution specifies the optical mode often
called surface plasmon-polariton (SPP). For the lossless case
where the permittivities are purely real, the dispersion re-
lation has a singularity when €; + &, =0. This condition
defines the surface plasmon frequency, ws, which is given
by @; = wp/\/1+ €, when using the Drude model for
metal permittivity. Here wy, is the plasma frequency of the
electron gas. When there is finite loss, the metal permit-
tivity is complex and the resonance condition should be
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written as which defines the condition for maximum electric
field amplitude. This theory can be straightforwardly ex-
tended to more complex geometries involving multiple in-
terfaces to obtain SPP solutions [31-34]. The localized
surface plasmon modes (LSPs) generally require numerical
calculations as the surface plasmon modes are highly sensi-
tive to the details of the given geometry. An important ex-
ception is the highly symmetric geometry of sphere and
circular cylinder for which a complete analytical solution
can be obtained by using the Mie theory where the scatter-
ing and absorption cross-sections are given by the scattering
coefficients a,, and b, corresponding to various multipole
terms [35]. For small spheres, the scattering coefficients a,,
have vanishing denominators when m*=—(n+1)/n,
where m is the relative refractive index of sphere relative
to the embedded medium and # is an integer. This leads
to a sharp increase in both scattering and absorption. In
the limit of extremely small sphere, the extinction is
dominated by the leading term, a;, resulting in the reson-
ance condition, m*=-2 or & =-2¢ when using the
Drude model for the metal permittivity. For the lossless
case where the permittivities are purely real, the resonance
condition is satisfied when = w,//2+ &, which is
sometimes called the Frohlich frequency. Thus, the LSPs
supported by metallic spheres and cylinders may be con-
sidered special cases of Mie resonances.

2.1.2 Multiple scattering theory

We now consider a cluster of nanoparticles or nanostruc-
tures which individually support LSP resonances. The key
additional consideration needed to properly describe the
cluster is the multiple scattering between the individual
components. Since analytical solutions are available for
spheres, it is instructive to consider a cluster of nano-
spheres. In this case, the scattering by the individual
spheres can be described by the standard Mie theory. The
fundamental difference from the single sphere case is that
for each sphere in the cluster the incident field is the com-
bination of the actual incident field impinging on the
cluster and the scattered fields by all other spheres in the
cluster [36-38]. To briefly provide an overview of this
process, we first remind the reader of the standard Mie
theory for a single sphere where all fields are described in
the coordinate system with the sphere located at the ori-
gin. The incident and scattered fields are then expressed
in terms of the vector spherical harmonics,

scat Z Z lEmn (ﬂmn 52;)1 + bm"M(m3}>1)

n=1lm=

B = > 3 B (dnNLL) + M) ) 2)
n=1m=-n

B = 3 B (N + 4, M)
n=lm=-n
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where Ei,; E;; and E,, represent scattered, internal
and incident fields, respectively, M,,,, and N,,,,, are the
vector spherical harmonics. Similar expressions for the
magnetic fields are readily obtained from the Maxwell’s
equations. The coefficients p,,, and g,,, are naturally
dependent on the exact form of the incident field. For
plane wave incidence, all terms with m =1 vanish and
the full expressions for the coefficients, ,, b, ¢, d,,, p, and
g, are available in the literature [39]. To describe multiple
scattering in a cluster made of L spheres, the coefficients,
Pun and q,,,,, describing the incident field for a sphere
needs to be rewritten to include the scattered fields by all
other spheres. This in turn requires translating all vector
harmonics functions separately obtained in the coordinate
systems of individual spheres into the common coordinate
system so they may be added. This is achieved by the
addition theorem of vector spherical harmonics:

M, = iz (Ao;;"M’mn + BOZ‘V”N'W)
v=0pu=-v (3)

oo v
=D (BOM,,, + AQMN,,, )

v=0pu=-v

where M,,,, and N,,,,, are the vector spherical harmonics
about origin O, M,,, and N, are the vector spherical har-
monics about origin O, and A0,;" and are the additional
coefficients whose complete expressions are available in the
literature [36]. One can then express the scattered field by
the /th sphere in the coordinate system of jth sphere using
the new coefficients, pmn and qmn,

= _ZZ (aﬂVA’:r:/n(l ] + vaB/:r:ln(lvj)>

V= 0/4 -v (4)
= SN (a Bn) + By (L)
v=0p=-v

where A" and By" are related to A0y’ and B0),," as given
in Ref. [36]. Imposing the boundary conditions at the sur-
faces of the spheres finally leads to a set of linear
equations

{ ji —IZZ)Z<“WB% +bl l:nvn(l7j))}
(5)

DY (4

o (L) + B Bl (1))
lzj v=0p=-v

Once the scattering coefficients, and, are found from
the above equations, then the total scattered field by the
entire cluster can be obtained by using the addition
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theorem one more time to express all fields in the
common coordinate system of joth sphere,

scat Z Z lEWln (dmn 5221 + bm”Mgr?r)t) (6)

n=1 m=-n
where
ZZZ( 1 (o) + Wi B (1))
lv Opu=-v
ZZZ (d//lVB/;’Z/Vl 110 +b/lw mn(l ]0))
=1 v=0pu=-v

(7)

The scattering cross section can be written in a similar
fashion to the single sphere Mie scattering case,

Cooat = i Z n(n +1)( 2n+1)(:':’2)!! (|Wn|2+|;,m”|z)
(8)

A similar multiple scattering theory has also been devel-
oped for an infinitely periodic array of spheres [40-42]. In
this case, since the system has infinite extent, the main con-
cern is the propagation of light inside the periodic array.
Due to the similarity to the Kohn-Korringa-Rostocker (KKR)
method widely used for electronic energy band structure
studies, this technique is sometimes called the vector KKR
method. Once again, vector spherical harmonics are used to
take advantage of the spherical geometry. Following the ori-
ginal development by Stefanou et al. [40,43], we begin with
the general expression for spherical wave expansion given in
equation (6) for a two-dimensional (2D) periodic array of
spheres. When a plane wave is incident on the 2D array, the
scattered wave must be expressed as a sum of the waves
scattered by all spheres in the 2D plane. Due to the period-
icity, the wave scattered by a sphere at r = R, differs only by
a simple phase factor, exp(ik;, - R,), from the wave scattered
by a sphere at the origin. Here, k| represents the tangen-
tial component of k-vector parallel to the plane of
spheres. The scattered field can then be written as,

Egar = Z Z <k mnv X Z exp(LkH ) 'l(kr”)xmn (6/ ¢)

+b’;nz exp(ik) Ry )iy (kry) X (6, ¢)>
R,
(9)

where b, are coefficients to be determined, r,=r — R,
h, is the spherical Hankel function and X, is defined

n(n+ 1)X,,, = —ir X VY,,, where Y,,,, is the spher-
ical harmonics function. While we try to keep the notation
of original authors as much as possible, we note that the
above equation is essentially in the same form as equation
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(6) where bf,m and bfnln in equation (9) are analogous to a,,,,
and b,,,, coefficients in equation (6). The phase factor, exp
(| -R,), in the above equation allows us to express the
scattered field in terms of plane waves with wave vectors,

1(; = (l( +g, =/ /(2—(1(” + g)2)

Here k|| represents the reduced wave vector defined as
Kiapgentiar = K|| + 8, where g is the reciprocal lattice vectors
of the 2D lattice, so that kj| now represents a vector within
the unit cell of the 2D reciprocal lattice or the surface
Brillouin zone. The sign in the superscript indicates for-
ward and backward propagating waves in the direction
perpendicular to the 2D plane. Now we construct the
same plane wave expansion for the incident wave as well
and obtain a matrix equation relating the coefficients of
the incident wave and the total scattered wave,

(10)

g

[Escat];l‘zz M;:g't’ [Einclsg',i'
g

(11)

where the new subscripts i, i’ indicate the Cartesian
components. The explicit expression for the matrix M’
may be found in Ref. [44]. Equation (11) fully describes
the interaction of a 2D periodic array of spheres with an
incident light but, since the summation is infinite, actual
numerical evaluations will involve truncation which intro-
duces numerical errors. Now we extend the theory to
three-dimensional (3D) array composed of multiple layers
of 2D arrays by constructing a transfer matrix describing
the multiple scattering effects between the adjacent 2D
planes. That is, the field between the nth and (n+ 1)th
layers are determined by the scattering by the two neigh-
boring planes of spheres. More specifically, the backward
propagating wave in the region between nth and (n + 1)th
layer is the sum of the forward propagating wave in the
same region back-scattered by (n + 1)th layer and the back-
ward propagating wave between the (n + 1)th and (n + 2)th
layers transmitted (or forward-scattered) by the (n + 1)th
layer. The forward propagating wave is similarly defined.
The transmission and reflection matrices are obtained from
the matrix M in equation (11) modified to account for the
shift of origin between the two adjacent planes. This way,
one obtains equations relating fields at adjacent layers
which must also satisfy the Bloch theorem because the sys-
tem is periodic in the 3rd dimension as well. Combining
the multiple scattering equations and the Bloch theorem,
one obtains an eigenvalue equation,

(—[Q”]gg’*Q++ [Q”]’(r*Q+ ]) (EIE:I (J,:)l)>

'Q
- exp(z’kxag)( ‘z“ ( )))

(12)
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Here the matrices Q are the scattering matrices defined
as Q;; = M;z exp {i (sKg-d, + s'I(; 'dl)} where s and s’

are + or — signs, g and g’ index the 2D reciprocal lattice
vectors, d, and d; are right and left translation vectors, the
matrix M is given in equation (11), and a3 is the primitive
unit vector representing the periodicity in the 3rd dimen-
sion. It is noted that this last part is the standard transfer
matrix formalism and can be used for non-spherical
scatterers as well [45]. For given  and k|| in the surface
Brillouin zone, the matrix in equation (12) is fully specified
and thus can be solved using the standard matrix inversion
techniques. The plane wave expansion over the reciprocal
lattice vectors of course will need to be truncated for nu-
merical evaluations.

2.1.3 Effective medium theory

Now we explore the limiting cases where the multiple
scattering theory presented above can either be simpli-
fied significantly or is inadequate. An obvious possibility
of simplification is found when the interaction among
the scatterers is weak. In this case, the multiple scatter-
ing effect will be small and may be ignored in the ex-
treme case. A commonly employed approximation for
such a case is the effective medium theory which at-
tempts to obtain an average response of a non-uniform
medium composed of multiple constituents. The most
widely used effective medium theory is the Maxwell
Garnett theory [46], which is derived from the Lorentz
local field relation covered in many textbooks. Briefly,
Lorentz considered an imaginary spherical cavity in a
dielectric medium and stated that the local field is sim-
ply given by the sum of the dielectric response of the
medium and the additional fields due to the surface
charge on the spherical cavity and due to the atoms in-
side the cavity. The lattermost contribution cancels out
to zero in a highly symmetric crystal structure. This
leads to the famous expression,

4P
Epcs = E+——

. (13)

where E and P are the macroscopic field and polarization
of the medium. Relating the local field to the induced
atomic dipole moment, p = aE;,.,;, we arrive at the
Clausius-Mossotti equation,

e-1 _ 4Na
e+2 3

(14)

where ¢ is the permittivity of the medium and N and
a are atomic density and polarizability, respectively.
Maxwell Garnett effective medium theory simply re-
places the atomic polarizability in the Clausius-Mossotti
equation with the polarizability of a spherical object. In
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the electrostatic limit, the polarizability of a sphere in vac-
uum has a simple form,

&-11Y) 4
a= a
&g + 2

where 4 is the radius of the spherical object and &; is the
permittivity of the sphere. The Maxwell Garnett mixing
rule is obtained by substituting equation (15) into (14),

(15)

e-1 &-1
fS' 85 + 2

= (16)
e+2
where f; is the volume fraction of the sphere. For spheres
embedded in a dielectric matrix with permittivity €,,, we
simply replace 1 and 2 in equation (16) with &, and 2e,y,
respectively.

We now make a connection with the more rigorous
multiple scattering theory presented earlier. In the Mie
theory for a single spherical scatterer, the scattering co-
efficients a,, and b, are generally expressed as infinite
series of spherical Hankel functions. Using the power
series expansions of the spherical Hankel functions, it
can be shown that the leading terms of these coefficients
are a, ~x°>, by ~x°, dy ~ x°, by ~ %, etc., where x = 27ma/A.
Therefore, for small spheres, we may retain only the
leading term in a,. Since the scattering and absorption
cross sections are proportional to |a;|> and Im(a;)
(imaginary part of a,), respectively, the scattering and
absorption efficiencies defined as the ratio of scattering
and absorption cross sections to the physical cross section
depend on x* and x, respectively, yielding the well-known
Rayleigh scattering results. More specifically, the leading
term of coefficient a; is

i2x%  g—gp,

— (17)
3 &+ 2,

a) =
The relationship between the a; coefficient and the
polarizability is apparent,

i 3
o (18)

This relationship reveals one of the key approximations
involved in the Maxwell Garnet effective medium theory:
retaining only the leading term of the leading coefficient a;
in the general solution of the Mie theory. This is essentially
the electrostatic approximation in which the polarizability
of small spheres is modeled by the static polarizability given
in equation (15). A modest improvement on this approxi-
mation may be achieved by the extended Maxwell Garnett
theory in which the full expansion of 4, is used to calculate
the polarizability [47]. The extended Maxwell Garnett
theory has been used successfully for metamaterials
[48,49]. However, if higher order terms in coefficient
a, are to be included, it is logical to include b; and a,
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terms as well. These terms represent the contributions
of the magnetic dipole and electric quadrupole terms,
respectively. The inclusion of b; can be done straight-
forwardly by defining effective permeability in exactly
the same way effective permittivity is calculated except
that a; is replaced by b; to define magnetic polarizability. It
has been shown that the optical properties of small particle
composites may exhibit magnetic permeability even when
the constituent materials are all non-magnetic [50]. Thus,
the use of extended Maxwell Garnett theory is more appro-
priate when both effective permittivity and permeability are
considered. It has also been attempted to improve the
Maxwell Garnett theory using dressed polarizability to
better account for the resonant effect [51]. In addition
to neglecting higher multipole contributions to the light
scattering and absorption, which is appropriate for small
particles, the Maxwell Garnett effective medium theory
also ignores multiple scattering among particles. This
can be seen from the facts that the polarizability is de-
fined by the single sphere Mie coefficient and that the
effective permittivity is constructed based on the Lorentz
local field concept. There are other issues related to the
Maxwell Garnett effective medium theory such as the
Lorentz catastrophe and non-symmetry and there exist
other effective medium theories that improve on those
shortcomings [52]. However, it can be said in general
that the effective medium theory is appropriate for small
particles with low volume fraction where both the higher
order multipole contributions and inter-particle interaction
by multiple scattering can be ignored.

2.1.4 Plasmon hybridization

We now us consider the opposite extreme where the
particles are closely spaced and thus strongly interacting
with one another. In this case, especially near plasmon
resonances, strongly overlapping evanescent fields exist,
leading to significant modification in the nature of the
resonance. In principle, this near-field interaction can be
described by the multiple scattering theory presented
earlier. However, there is a practical difficulty in that it
requires the inclusion of a large number partial waves
and thus makes the numerical computation extremely
challenging. Instead it is more profitable to look for
new eigenmode solutions described by the collective
modes delocalized over the entire structure. Prodan
et al. proposed the plasmon hybridization model [13].
To be sure, the concept of plasmon hybridization itself
is not new. A classic example is coupling of two surface
plasmon modes in a metal thin film and the resultant
formation of symmetric and anti-symmetric modes [53,54].
But Prodan’s model is highly useful as it provides a
complete set of eigenmode solutions in complex nano-
structures. The plasmon hybridization model considers
the electron gas as incompressible fluid subject to

Page 6 of 27

Coulombic interaction. The plasmon resonance is then
represented by self-sustained oscillations of the electron
fluid which may be obtained from the Euler-Lagrange
equation for the Lagrangian,

L= MJqVﬂdS—%J‘MdeS’

2 r-r’

(19)

where ng and m are the electron density and mass, respect-
ively, and o is the surface charge density. This technique
was shown to agree well with the full electrodynamic simu-
lation results in the electrostatic limit where all of the in-
volved length scales are small compared to the wavelength.
It was successful in describing the plasmonic resonances
in complex structures including nanoshell, nanoegg and
nanorice [55]. The model has also been applied to multi-
particle systems such as dimer, trimer, quadrumer, hexamer
and heptamer [14,20,56]. A similar method has been pro-
posed by Mayergoyz et al. who derived a boundary integral
eigenvalue equation using the electrostatic approxima-
tion. In this approach, the surface plasmon resonance
is described as an eigenstate of the homogeneous boundary
integral equation [57],

o(r) Y Ia(r’) (rr) nds

= by |r_r,|3 .

(20)

For an arbitrary geometry, the boundary integral equation
(20) can be solved numerically to obtain the eigenvalue y
and eigenfunction o(r). The eigenvalue y is related to the
permittivity e(w) of the metal as

(21)

where g, is the permittivity of the background material.
It is thus possible to determine the resonance frequency
from the permittivity of the metal. The eigenfunction
o(r) describes the self-sustained surface charge distribution.
This technique has been used to describe collective
plasmon resonance supported by hexamers and heptamers
made of gold nanoparticles and nanorods [17,21,22].

It should be noted that both of the two techniques
described above employ electrostatic approximation
and thus cannot describe the retardation effect. Their
applicability is therefore limited to extremely small particles
or low frequencies. Nevertheless, these methods proved
highly useful in the exploration of coupled plasmon modes
in complex nanostructures consisting of multiple nanopar-
ticles. The main reason is the applicability of elegant group
theoretical method in a fashion similar to the molecular
orbital theory. Just as the molecular orbital can be con-
structed from the symmetry adapted linear combination
of atomic orbitals, the hybridized plasmon modes can be
constructed from the symmetry adapted linear combination
of individual nanoparticle plasmon modes. This enables a
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highly effective and systematic exploration of plasmon
modes in a complex, strongly coupled nanostructure.
Here we briefly describe this approach using the boundary
integral method for a collection of nanoparticles. First, the
plasmon modes of an isolated nanoparticle can be found
from the eigenvalue equation given in (20). For the collec-
tion of N nanoparticles, the surface charge distribution
can be expressed as a linear combination of the individual
nanoparticle eigenmodes,

Z Z a,d (x (22)
Using equation (20), we may write
A r-r N
o(r) = EZ Iagag (rﬁ) ( ﬁ)s -ndS (23)
ok 4]

where X represents the surface charge distribution of
kth mode of Sth nanoparticle. One can then use the bi-
orthogonality between the surface charge distribution,
o(r), and the surface dipole distribution, t(r), to derive,

Zaﬁ{f ()i _[ok(rﬁ)( ) dsﬁds}

ey’
:E%;KZ; x

(24)

The total surface charge distribution in equation (22)
must satisfy the boundary integral eigenvalue equation
in (20) where the integral is conducted over the surfaces
of all nanoparticles. However, the problem now has been
transformed to a matrix eigenvalue equation given in
(24). Physically, the matrix K represents the interaction
between the surface dipole density of the mth mode of a
th particle and the charge distribution of the kth mode
of Bth particle. Now suppose the arrangement of the
nanoparticles is symmetric and certain symmetry oper-
ations keep the nanoparticle cluster unchanged. This
means the symmetry operators leave the interaction
matrix K invariant. Then, the symmetry operators and
matrix K commute and consequently they share the
same eigenvectors. It is now possible to classify all ei-
genvectors of matrix K based on how they transform
under various symmetry operations. In the language of
group theory, the eigenvectors are classified by the irre-
ducible representations of the symmetry group. These
eigenvectors possess well-defined transformation char-
acteristics under all symmetry operators that leave the
structure invariant and form the symmetry-adapted
basis set. The symmetry properties of the plasmon modes
proved powerful in analyzing the interaction between vari-
ous plasmon modes and also between light and plasmons.
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For example, the incident light interacts with the surface
plasmon mode via the induced dipole moment. For a
given symmetry group, the dipole operator belongs to
a certain irreducible representation. Thus, it naturally
follows that only those surface plasmon modes belong-
ing to the same irreducible representation as the dipole
operator can interact with light. Other modes are the
so-called dark modes that do not interact with incident
light and thus cannot be detected by experiments. Fur-
thermore, surface plasmon modes belonging to different
irreducible representations do not mix together as their
basis functions are mutually orthogonal. These properties
provide powerful insights into how complex plasmon
modes evolve and interact in complex nanostructures.

2.2 Weakly coupled plasmonic nanostructures

As discussed in the previous section, when the plasmonic
nanostructures are only weakly coupled, they may be
described well by the effective medium theory. There is a
large body of literature on metamaterials which are com-
posed of deep sub-wavelength scale structures and are
generally described well by the effective medium theory.
The initial development of metamaterials was driven
largely by the negative index materials for which excellent
reviews are available [58,59]. In this section, we focus on
the latest development of plasmonic nanostructures in the
weak coupling regime.

2.2.1 Perfect absorber

An interesting application of plasmonic nanostructures
is the perfect absorber which absorbs all incident light
with minimal reflection and transmission. Such a material
would find a wide range of applications in, for example,
coatings for optical instruments, sensors, and photo-
thermal or photovoltaic energy conversion devices. An
inspection of Fresnel’s coefficients immediately reveals
that perfect absorption is achieved when the real part
of the refractive index is matched with the incident
medium and the imaginary part is small. This condi-
tion would result in negligibly small reflection and, if
the material is thick enough, vanishing transmission as
well. This is, in fact, how perfectly absorbing metamaterial
was obtained using aligned carbon nanotube arrays [60].
This example illustrates clearly that a perfect absorber
does not have to involve a plasmonic nanostructure
[60,61]. It is, however, of great technological importance
to achieve perfect absorption in thin films and plasmonic
nanostructures are ideally suited for that purpose.

One of the simplest examples is a line grating. It is
well known that a line grating on a metal surface can
couple the free space light into surface plasmons. An
ideal grating presents infinitesimal modulation of surface
so that the plasmon modes of the original flat surface
are well preserved and the grating only provides the
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extra momentum for coupling. However, it was found that,
even in a grating as shallow as 20 nm, additional surface
plasmon modes strongly localized at the grating lines exist
and interact with the surface plasmon-polariton modes.
Lu et al. investigated silver nanograting structures fabri-
cated on the back-electrode of a PCDTBT:PCBM organic
photovoltaic device [62]. The system supports two surface
plasmon modes when excited by transverse-magnetic
(TM, electric field perpendicular to the grating lines)
polarized incident light. One is the localized surface
plasmon (LSP) mode whose field profile is strongly lo-
calized at the grating lines and wavelength insensitive
to the incident angle and active layer thickness. The other
is the surface plasmon-polariton (SPP) mode strongly
interacting with the grating period and thus highly sensi-
tive to incident angle and active layer thickness. Figure 1(a)
shows the wavelength of surface plasmon induced absorp-
tion peaks as a function of active layer thickness, revealing
two branches with distinct dependence on active layer
thickness. In general, as the active layer thickness is
increased, the refractive index of the dielectric side of the
surface is increased, resulting in a red shift in surface plas-
mon wavelength. The surface plasmon dispersion relation
for a dielectric loaded metal surface can be calculated
numerically [34]. As shown by the light blue crosses in
Figure 1(a), the surface plasmon wavelength exhibits a
red shift with increasing active layer thickness and this
line coincides well with the SPP branch of the silver
nanograting overcoated with PCDTBT:PCBM active
layer. This indicates that the 20 nm tall silver nanograting
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acts as an ideal grating for the SPP modes which retain
the characteristics of those in the flat dielectric loaded
metal surface. The other branch representing LSP modes
is unique to the grating structure and not observed in flat
interfaces. Due to the strongly localized nature, it is in-
sensitive to the thickness of the dielectric layer. For thick-
nesses near 30 nm, the two branches exhibit anti-crossing,
indicative of strong mixing between the LSP and SPP
modes. The field profiles in Figure 1(b) and (c) show the
two contrasting patterns for LSP and SPP modes while
those in Figure 1(d) and (e) reveal considerable mixing.
Since these modes strongly affect the absorption spectra,
the knowledge of the existence of two different modes and
their interaction is essential to designing light trapping
plasmonic grating structures for photovoltaic devices.
When the grating height is increased, the surface
plasmons lose their original characteristics of flat in-
terfaces and the LSP modes become the dominant fea-
tures. Kravets et al. studied a gold grating with 130 nm
height fabricated by depositing gold on a 130 nm thick
poly(methyl methacrylate) (PMMA) grating [63]. As
shown in Figure 2, this structure exhibited extremely
low reflectance and transmittance for TM polarized
light, achieving blackbody-like absorption in the visible
spectrum with a thickness much smaller than the
wavelengths. A theoretical analysis is needed to under-
stand this remarkable behavior. A rigorous theoretical
treatment would require full consideration of two sets
of gold gratings, one formed in between the PMMA
lines and another formed on top of PMMA lines.

Figure 1 Interaction of surface plasmon. (a) Surface plasmon peak positions as a function of PCOTBT:PCBM active layer thickness exhibiting
anti-crossing behavior. Blue and red solid dots represent LSP and SPP peak positions for various PCDTBT:PCBM thicknesses. Blue crosses represent
the SPP peak positions calculated from the effective index of the SPP mode supported by the flat silver-PCDTBT:PCBM-air multilayer structure.

(b, c) Electric field profiles for the surface plasmon modes in the 80 nm thick PCDTBT:PCBM on silver grating and (d, e) electric field profile for
the surface plasmon modes in the 30 nm thick PCOTBT:PCBM on silver grating. To clarify the structure the bottom grating is the silver nanograting
fabricated by nanoimprint lithography. The top surface is also corrugated simply by the result of depositing on a corrugated surface (From Ref. [62]).
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Figure 2 Reflectance and transmittance spectra of the gold nanostripe array with period =320 nm and linewidth = 150 nm. Insets show the
polarization-contrast optical microscopy images. The inset in (b) shows reflectance spectra for s- and p-polarizations at normal incidence (From Ref. [63]).

However, since the grating lines are well separated (by
more than 100 nm), near-field coupling between adja-
cent grating lines should be small and therefore it
should be possible to use a much simpler effective
medium theory. To generalize the Maxwell Garnett
results for spherical particles given in equations (14)
~ (16) to non-spherical shapes, we introduce depolarization
factor, L. For a general ellipsoidal shape, L is defined
as [64]

L= axazy 2 J.O as where
)yl a) (s+a2) s+ a2
i =x,9,z
(25)

where 4; is the semi-axis along the i-direction. For a
sphere, L,=L,=L,=1/3. For a cylinder oriented along
the x-direction, L, =0, L, = L, = 1/2. For a thin film in the
yz plane, L, =1, L, =L, =0. We can now write a general-
ized Maxwell Garnett effective permittivity as follows [65].

fai
l—fLiOCi

séﬁ =1+ where | =x,y,z (26)

where f is the volume fraction as before. Furthermore,
the volume-normalized polarizability can be written in
terms of the depolarization factor as,

&/em—1

=—"" —  where i
1+ Li(e/em-1)

@ =x,9,2 (27)
where € and e, are the permittivity of the ellipsoid and
medium, respectively. Combining the two equations above

yields

a, = &/eu—1 and a, = a, 22‘"5//;”‘:11) (28)
gy = 1+ f(e/em—1) and
_ &/em—1+f(es/em—1)
SZ - gzﬁ &/em + 1-f (&;/em=1)
(29)

for a cylinder oriented along the x-axis. Equation (29)
yields the real and imaginary parts of the effective re-
fractive index of the gold grating to be roughly 1.5 and
0.3, respectively, over a broad wavelength range up to
500 nm for TM polarization. These values are close to
the optimal complex refractive index value for near-
perfect absorption in a thin film. For example, a film
with 130 nm thickness on a glass substrate would exhibit
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90% absorption at A =400 nm if the refractive index is
1.3 +0.5i. A similar approach can be made with nanoparti-
cles instead of nanograting [66]. In this case, the polarizabil-
ity of a sphere given in equation (15) in Section 2.3 can be
used in the Maxwell Garnett effective medium theory. The
major difference in the nanoparticle composite medium
and the nanograting is the polarization dependence. The
inherent isotropy of spherical geometry naturally leads to
isotropic, polarization-independent medium in contrast to
the strong polarization sensitivity in nanogratings.

A question of both scientific and technological interest
is how much absorption is possible in ultrathin films. A
simple solution may be found by using total internal re-
flection. Using the Kretschmann geometry, an ultrathin
film absorber can be excited at glancing angle, effectively
extending the optical path to infinity and consequently
achieving near-perfect absorption. Using this method, 94%
absorption in a 4.5 nm thick NbN nanowire array has been
demonstrated [67]. It should be noted that this method
does not require surface plasmon or any other types of
surface resonances, although they could certainly help.
While this approach clearly offers a quick solution to
achieve perfect absorption, it is not always possible or
feasible to use total internal reflection geometry and it
would be much more desirable to achieve high absorption
at normal incidence or over a broad range of incident an-
gles. To tackle this problem, let us consider a thin film with
thickness d and refractive index m=n+ix on a semi-
infinite substrate with refractive index 7, and incident
medium with refractive index »; (Figure 3a). The reflection
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and transmission coefficients for normal incidence can then
be written in a general form as follows.

ri—rsy? I+r)1+ry)y

=— d t= —ins0
[— an Tp— exp(-insd)
Nis—m ,
h s = — dy= )
where 14 g and y = exp(imd)

(30)

Also, § =g¢d and ¢, is the vacuum wave number.
Generalization to non-normal incidence is straightfor-
wardly done by replacing qq with the normal component
of incident wave vector. The absorptance is given by
where C = ny/n; for transverse-electric (TE) incident field
and for TM. One can now survey the possible values of
m to find the maximum absorption. Figure 3(b ~e)
shows the absorptance at Ay =900 nm for various film
thicknesses of 2, 10, 50 and 150 nm. All cases show a
maximum absorptance of approximately 50% along the
line n = k. Thick films show additional maxima along the
horizontal axis due to the Fabry-Perot resonances. In ultra-
thin films, only those maxima occurring along 7 = x line
are achievable. Normally, for a fixed value of m, the absorp-
tion vanishes with vanishing thickness as A = O(§). To go
beyond this limit, Higglund et al. sought a refractive index
value with dependence where -1 < v <0 so that m is large
enough to produce substantial absorption while remains
small [68]. The optimum value of 71,,,,, resulting maximum
absorption was given as,

m |G

=-O=

Figure 3 Absorptance of thin film with complex refractive index. (a) Thin homogeneous film with complex refractive index m =n + ik and
thickness d is embedded between two semi-infinite dielectrics of refractive indices n; and n, respectively. In (b-e), absorptance in the film is shown as a
function of its optical constants for normal incident light. The wavelength is 900 nm, and the dielectric environment has n;=n, = 1. The film thicknesses
dare 2,10, 50, and 250 nm in panels b, ¢, d, and e, respectively. The dotted lines mark n =k about which the shown absorption is nearly symmetric
for the two thinnest films (b, c). In these cases, the absorptance reaches a peak value of close to 50% on the symmetry line. For the two thicker films
(d, e), the peak height increases and additional maxima appear along the n-axis due to Fabry-Perot modes (From Ref. [68]).
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The maximum absorptance is given as
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Equations (31) and (32) show that the maximum ab-
sorption occurs at # = k and the maximum absorptance
is close to 50%, both of which are shown in Figure 3.

It is obvious that no natural materials would exhibit
the optimum refractive index given in equation (31). It is
therefore necessary to create a composite medium whose
effective refractive index is close to the optimum. It
was shown that 50% absorptance could be realized over
a broad range of wavelengths using an array of ellipsoidal
silver shells with various geometry [68]. This scheme can
be extended to a thin film with a back reflector. The
reflector automatically eliminates transmission and the
problem is reduced to minimizing reflectance. A general
system to consider is an ultrathin film with a complex re-
fractive index m and thickness d, separated from a perfect
reflector by a spacer layer with refractive index n, and
thickness /. The incident medium index is #,;. The reflec-
tion coefficient is then given as

2
S0 . (33)
1-rirqy
Nijq—m ,
where r=—"-—— y = exp(imd) and
gt p(imd)

ns = ing cot(mA,/2M)

The critical wavelength ). is defined as the wavelength
satisfying the quarter wavelength condition, A, =4nh
Equation (33) has the same form as equation (30) and
thus 7; may be treated as the effective index of the
spacer-reflector system. The maximum absorption con-
dition is then found by requiring r; =r,/” in equation
(33). Retaining only the leading term the optimum re-
fractive index is given as [69],

o i(ni—.ny) 7L . A,
mo=——— =5 [ml + n, cot( ) (34)

When A =\, #; = 0 and the optimum refractive index

is given as m = (1 + i)+/n;/26. This represents the critical
coupling condition where the required refractive index m is
minimum. On the other hand, when the spacer layer thick-
ness tends to zero, ny diverges and the optimum refractive
index cannot be satisfied. Again, the implementation of this
concept requires an artificial composite medium made of
plasmonic nanostructures. Recently, strong absorption has
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been experimentally observed using a gold nanoparticle
array fabricated by block copolymer lithography and over-
coated with a dielectric layer by atomic layer deposition
[70]. As shown in Figure 4, the ultrathin composite film
with a thickness of ~25 nm exhibited near-perfect absorp-
tion at around 600 nm. Vast majority of absorption occurs
in the gold nanoparticles, which is not desirable for photo-
voltaic applications where the absorption must take place
in the semiconducting material for current extraction. It
is nevertheless noteworthy that the effective absorption
coefficient of the gold nanoparticles in this structure was
an order of magnitude greater than solid metal. A similar
critical coupling leading to perfect absorption has been re-
ported on a gold nanodisk array deposited on a glass sub-
strate [71]. In this case, the critical coupling condition was
achieved by tuning the nanodisk density and incident
angle of incoming light. When the critical coupling
condition is satisfied, reflected light is annihilated by
the destructive interference between the light reflected
from the substrate and the gold nanodisk array layer.

2.2.2 Invisibility

In addition to enhancing absorption, controlling or sup-
pressing light scattering is also of great interest for
many applications. It has been shown that the dominant
dipolar contribution to the scattering from a spherical
or cylindrical dielectric object could be greatly reduced
when coated by a layer of material with negative or very
low values of the real part of permittivity [72]. This tech-
nique is inherently non-resonant and thus the bandwidth
of the scattering cancellation can be quite broad and
limited only by the material dispersion of the coating.
It was shown that the operational bandwidth could be
further extended by use of multiple layers of coatings [73].
Potential applications of this type of cloaking include
cloaked sensors [74], cloaked near-field probes [75,76]
and reduction of optical forces [77]. For implementation, a
natural choice for the coating material is a metal, which ex-
hibits negative permittivity values at frequencies below its
plasma frequency. However, in the optical frequency region,
most metals tend to exhibit large negative permittivity
values. Consequently, an unrealistically thin layer is re-
quired to cancel the dipole moment of a dielectric ob-
ject whose permittivity is typically a small positive number.
To circumvent this issue, an effective medium formed by
plasmonic nanostructure is needed. Recently, Tamma et al.
reported scattering cancellation by a gold nanograting
fabricated on the sidewall of a silicon nanorod [78]. As
shown in Figure 5(a), the cloaked object was a silicon
nanorod fabricated by electron-beam lithography. The
gold nanograting was then fabricated on the sidewall
by a combination of gold evaporation, focused ion beam
milling and silica protective coating deposition by sputter-
ing. The final structure was coated with SU-8 to form a
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Figure 4 Absorptance of gold nanoparticle embedded thin films. (a) Finite element method (FEM) calculated absorption rates, determined for
the sample with the highest absorbing SnS, coated Au array at its peak wavelength. A plane wave with incident electric field strength Ey propagates
along the normal (x-) direction, with its electric field vector along z. The rectangular unit cell used for the hexagonal lattice is shown below the plot
(dashed lines). (b) Analogous for ZnO coated sample. (¢, d) Sample reflectance (R), array absorptance (A), and absorptance in the Al reflector (AAI,
including intermix layer), as calculated by FEM and obtained from the spectroscopic ellipsometry (SE) model. (e) FEM calculated absorptance in the
Au dots of the SnS, coated sample, in the SnS, coating, and in the SiO, spacer, respectively. (f) Analogous for the ZnO coated sample (From Ref. [70]). )

Wavelength / nm

waveguide layer and the structure was excited by 1550 nm
light coupled into the SU-8 guiding layer. The scattering
properties were then investigated by near-field scanning
optical microscopy (NSOM). The waveguide geometry
used in this study makes it impossible to directly measure
the scattered light intensity. Instead, NSOM was used to
map the interference fringes produced by the incident

light and back-scattered light (Figure 5b). It was clear that
the cloaked silicon nanorod scattered much less because
the interference fringes were weak and required a long
integration time and high gain to obtain reliable data
whereas the reference nanorod showed a strong interfer-
ence pattern. Tamma et al. then used the effective medium
theory to relate the effective index of the coating with the
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Figure 5 Scattering cancellation by plasmonic nanostructure. (a) Scanning electron micrograph (SEM) of the silicon nanorod with gold
nanograting fabricated on the side wall. (b) Near-field scanning optical micrograph (NSOM) of scattered light by the cloaked silicon nanorod
measured with A= 1550 nm. The fringe curvature contains the information on scattering cross section. (c) Scattering cross section extracted from
the analysis of fringe curvatures. A reduction of 9.8 dB was achieved (From Ref. [78]).
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fringe curvature. Here the gold nanograting coating was
described as a multilayer structure for which the effective
medium theory simple yields [79]

) =ftatfoer and & =(f,/ea+f/e)"
(35)

where the subscripts || and L indicates polarization parallel
and perpendicular to the interface, respectively. The result
of the complete analysis shown in Figure 5(c) indicates that
a 9.8 dB reduction in scattering cross section has been
achieved. The same approach has been implemented
with silver nanoparticles attached on silica spheres [80].
The scattering reduction was however small, ~20%, and
the system also exhibited strong absorption.

In concluding the discussion on weakly coupled system
that can be described well by the effective medium theory,
it is worth noting the robustness of effective medium the-
ory. As discussed in the previous section, the effective
medium theory is valid only when the feature size is small
compared to the wavelength and the interaction among
the nanostructures is weak. When these two conditions
are met, the optical properties of the composite structure
are determined by the dipole moment of the individual
nanostructure without having to include higher order
resonances and any higher order interaction. These con-
ditions certainly sound very restrictive but in reality the
effective medium theory has been successfully applied
to a wide variety of systems which at first glace do not
seem to satisfy the conditions for validity. An excellent
example is the silicon nanorod cloaked by an array of gold
nanowires described above. The individual gold nanowire
was 13 nm thick and 20 nm wide and the spacing between
two adjacent gold nanowires was 63 nm. This system was
modeled as a multilayer composed of 20 nm thick gold
and 43 nm thick silica films. Despite this seemingly gross

simplification, the effective medium theory provided a re-
markably accurate result in good agreement with experi-
ments. It can be argued that the effective medium theory,
although oversimplified, has captured the essential part of
the light-matter interaction, which in this case concerns
the induced surface charge and resultant screening effect.
The effective medium theory for multilayers resulting in
effective permittivity given in equation [35] considers the
induced polarization in each layer. When the incident
electric field is perpendicular to the multilayer interfaces,
it produces a net interface charge due to the discontinuity
in permittivity at the interface. These interface charges
then produce a polarization field that counteracts the inci-
dent electric field, resulting in a permittivity given as ¢, in
equation [35]. On the other hand, when the incident elec-
tric field is parallel to the interface, no interface charge is
formed and thus the effective permittivity is simple given
as an arithmetic mean of the constituent permittivities,
as given for g in equation [35]. The experiments in
the cloaked silicon nanorod were done for TM wave-
guide mode which has electric field parallel to the gold
nanowires. This corresponds to the no interface charge
case and the multilayer effective medium theory for no
screening case is applicable. If the experiments were
done for perpendicular polarization, it would have been
important to accurately account for the interface charge
density and thus the multilayer effective medium theory
could have been inaccurate.

Another case worth mentioning is the nanoparticle array.
It is well established that small nanoparticles have domin-
antly dipole character with negligible contributions by the
high order components. Thus, as long as the nanoparticles
are separated well enough, effective medium theory should
work well. But defining a precise validity limit is difficult be-
cause unlike the perturbation theory the effective medium
theory does not allow quantitative estimation of errors. For
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plasmonic nanoparticles, the literature suggests volume
fraction of 10 ~ 20% would be the upper limit where the
effective medium theory begins to break down [49,81].
In a study of collective magnetic resonance supported
by a cluster of plasmonic nanoparticles, Tamma et al.
presented a comparison between the rigorous multiple
scattering theory and the extended Maxwell Garnett ef-
fective medium theory [49]. Figure 6 shows the dispersion
curves and effective permittivity for silver nanoparticle
arrays with silver volume fractions of 0.1, 0.3 and 0.5.
As shown, even at a very high volume fraction of 0.5, the
effective medium theory agrees reasonably well with the
rigorous multiple scattering theory. The discrepancy is
found near the band edge in all cases where the discrepancy
remains small for f=0.1 and becomes significant for higher
volume fractions. This discrepancy observed near the band
edge captures the nature of approximation in the effective
medium theory. Unlike the effective medium theory, the
multiple scattering formalism requires the complete know-
ledge of the nanoparticle positions in the array. For the cal-
culations in Figure 6, the nanoparticles were assumed to
be in the face-centered cubic (fcc) structure and the light
propagation along the (111) direction was calculated. If the
calculations were made for other crystallographic direc-
tions, the resulting dispersion curves would be different
and the differences would be most pronounced near the
band edge where the Bragg resonance condition is met. By
construction, the effective medium theory does not require
the knowledge of nanoparticle arrangement. This implies
the effective medium theory would represent an averaged
response of all different crystallographic orientations. It is
therefore not surprising to see the major difference between
multiple scattering theory and effective medium theory
near the band edge. This however does not necessarily rep-
resent the deficiency of effective medium theory because
most nanocomposite structures do not have a definite
crystal structure. A few exceptions are DNA-driven self-
assembly of plasmonic nanoparticles that lead to single
crystalline fcc and body-centered cubic structures [82,83].
But even in those cases, the achievable structures remain
small and multiple crystallographic orientations may be in
play. Therefore, although it is advisable to compare with
rigorous multiple scattering or other methods whenever
possible, the effective medium theory remains highly useful
in an extremely wide range of plasmonic nanostructures.

2.3 Strongly coupled plasmonic nanostructures

2.3.1 Dimers

Strongly coupled plasmonic nanostructures have been
studied extensively during the past decade. For example,
the hot spot leading to enhanced Raman scattering is
generally attributed to the coupling between two adja-
cent silver nanoparticles producing strong local field in
the gap between the two nanoparticles [84]. A similar
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Figure 6 Comparison of multiple scattering theory and effective
medium theory. (a), (b), (c) Dispersion curves obtained from multiple
scattering (M.Scat) and extended Maxwell-Garnett effective medium
theory (EMT) for silver nanoparticle array with volume fractions of 0.1, 03
and 0.5, respectively. (d), (e), (f) Real and imaginary parts of the effective
permittivity calculated by the extended Maxwell-Garnett effective medium

for silver volume fractions of 0.1, 0.3 and 0.5, respectively (From Ref. [49]).
A\

phenomenon has been observed in a coupled-dipole nano-
antenna composed of two nanorods aligned end-to-end
and separated by a small gap [85]. Also, early experimental
studies on the simple model system of two closely spaced
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metal nanoparticles, a system often dubbed as dimer,
showed the plasmon resonance exhibits red shift with
decreasing gap between the nanoparticles [86-89]. Both the
formation of hot spots and the red shift with decreasing
gap size are due to the hybridization of individual nanopar-
ticle plasmons. When the gap between the nanoparticles is
small enough to allow significant overlap of the plasmon
modes of the individual nanoparticles, the strong near-field
interaction consequently leads to hybridization of the indi-
vidual single particle plasmon modes to form a new set of
coupled modes delocalized over the entire structure. In a
dimer, the single particle plasmon modes couple with each
other to form symmetric and anti-symmetric combinations.
This is the standard coupled oscillator problem with numer-
ous analogous examples in physics [90]. In the plasmonic
dimer, the oscillating entity is the free electron charge in the
metal. When the charge density in the two particles oscil-
lates in phase along the axis of the dimer, we have a sym-
metric mode with strong electric field in the gap. When the
two oscillations are 180° out of phase, we have an anti-
symmetric mode whose electric field profile has a null in
the gap. In molecular analogy, the symmetric mode corre-
sponds to the bonding orbital whereas the anti-symmetric
mode is the anti-bonding orbital. Also, the symmetric mode
has a lower energy and the anti-symmetric mode has a
higher energy, just as the bonding orbital has a lower energy
and the anti-bonding orbital has a higher energy. As illus-
trated in Figure 7 for a nanorod dimer, this hybridization
model offers a good explanation for both the hot spot for-
mation and the red shift in plasmon resonance wavelength.
The hybridized plasmon modes in a dimer can be moni-
tored by directly solving Maxwell’s equations numerically
using techniques such as finite-difference time-domain
(FDTD) [91] or finite-element method (FEM) [92]. Never-
theless, it is always profitable to seek for a theoretical
model that could provide deeper insights on the physics
governing the hybridization. Also, it is worth mentioning
the inability of most brute force numerical simulations to
excite anti-symmetric modes. This deficiency stems from
the typical simulation geometry in which the nanostruc-
ture under investigation is excited by incident light. The
simulation then calculates the resultant absorption or
scattering which reveals the characteristics of the hy-
bridized plasmon modes. This unfortunately works well
only for the symmetric mode, which typically possesses
a large dipole moment and thus interacts strongly with
light. The anti-symmetric mode, however, represents a
state in which the induced dipole moments in the indi-
vidual nanoparticles align anti-parallel and thus only
produce a small net dipole moment. This mode there-
fore does not interact with light and remain invisible in
most experiments and simulations. For this reason, the
symmetric mode is often referred to as the bright mode
and the anti-symmetric mode as the dark mode. The
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Figure 7 Plasmon coupling in nanorod dimer. (a) Schematic
drawings of a coupled-dipole nanoantenna made of two plasmonic
nanorods with a small gap and its mechanical analog, a coupled
mechanical oscillator. (b) Energy-level diagram and simulated
near-field intensity spectra for 30 nm high, 50 nm wide and 110 nm
long symmetric two-nanorod antennas with 6 nm (blue dashed) and
16 nm (green solid) gap, as well as single-nanorod antennas with the
same dimensions (black dotted) (From Ref. [90]).

anti-symmetric mode is nonetheless important as, for
example, it can interact with the bright mode to pro-
duce Fano resonance as described later. It is therefore
useful to have a theoretical model that can describe
both the symmetric and anti-symmetric modes equally
well. The simplest model employs the electrostatic ap-
proximation where the retardation effects are neglected.
In this formalism, the polarizability, o, of individual
nanoparticles is given by equations (15) and (27) for
spheres and ellipsoids, respectively. The induced dipole
moment in each particle is then given as p=aE. In a
dimer, the field, E, contains both the applied field and
the field produced by the neighboring particle. Since an
individual nanoparticle is treated as a point dipole, we
can write

E1 = Einc +g uzs and Ez = Einc —I—g
Emd Em

H
dB

(36)

Here the subscripts 1 and 2 index the two particles in
the dimer, €, is the permittivity of the background
medium and g is the geometry dependent parameter
given as g=2 for end-to-end coupling and g=-1 for
side-to-side coupling [93,94]. The coupled equation
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in [36] can be solved to find the polarizability of the
bonding mode,

a1 (14 gar/d®) + az (1 + gay /dP)

(@) 1-g2ayay /d°

1
=5 (37)

The plasmon resonance condition is found by the max-
imum polarizability and, if the two particles are identical, is
given as,

dS
e

a (38)

Using the polarizability given in equation (27), we find

& _1+d°(1-Li)/g (39)
& 1+d°%/g

Since the permittivity of gold has almost linear de-
pendence on wavelength in the visible region, equation
(39) specifies the dependence of the surface plasmon
wavelength of a gold dimer on the center-to-center spa-
cing. This simple model correctly predicts the red shift
of the symmetric mode for end-to-end aligned dipole
pair and the blue shift for side-to-side aligned dipole
pair. The opposite behavior originates from the opposite
sign of g in equations (37) ~ (39). In plasmonic dimer made
of two identical particles, the end-to-end dipole align-
ment corresponds to the excitation of dimer with incident
polarization along the dimer axis while the side-to-side
coupling case corresponds to incident polarization per-
pendicular to the dimer axis. The opposite peak shifts
in the two cases have been experimentally observed in
the extinction spectra of gold nanodisk pairs fabricated
by electron-beam lithography (Figure 8a) [88]. Further-
more, Jain et al. reported the fractional plasmon peak
shift, AN/A,, exhibits a universal scaling against the normal-
ized gap width defined as gap/diameter, irrespective of the

Page 16 of 27

detailed geometrical parameters, as shown in Figure 8(b)
[95]. This universal scaling was also found for dimers of
non-circular shapes and nanoshells and also in trimers
[96,97]. The origin of the universal scaling behavior may
be found in equation (39), which predicts that the frac-
tional peak shift would behave as (d/D)"> or [(s + D)/D] 3
where s =d — D is the gap width between the particles and
D is the diameter. When the gap width becomes extremely
small, the simple dipole-dipole interaction model breaks
down and one must take into account the higher order
multipole terms, leading to an exponential dependence
observed in Figure 8. This omission of multipole interaction
terms is one of the key limitations in the dipole-dipole
interaction model, which leads to a significant under-
estimation of plasmon coupling at extremely small gaps.
Additionally, the dipole model is essentially based on the
electrostatic approximation which ignores any retardation
effect. To properly describe the interaction at small gaps in-
cluding the retardation effects would require the use of nu-
merical modeling techniques such as FDTD and FEM.
Before moving on, it is worth mentioning that the universal
exponential dependence has led to the derivation of the so-
called plasmonic ruler equation, which enables precise
determination of distances in biological systems, opening
many opportunities for biosensing [95].

Note that the previous discussion of dipole-dipole coup-
ling focused only on the symmetric mode where the two
individual dipoles are parallel to each other. As stated earl-
ier, the anti-symmetric mode with anti-parallel dipoles has
a small net dipole moment and thus interacts only weakly
with light. This is not true when the anti-symmetric mode
possesses a large magnetic moment. In this case, the anti-
symmetric mode interacts strongly with light through its
magnetic field. A dimer of small spherical nanoparticles
does not support strong magnetic resonance but a pair of
nanorods can. A pair of gold nanorods was shown to sup-
port a strong magnetic resonances [98,99] and soon after
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Figure 8 Plasmon coupling in gold nanoparticle dimer. (a) Spectral position of the extinction maximum vs. interparticle distance for seven
gold nanodisk pairs fabricated by electron-beam lithography (From [88]). (b) Calculated fractional plasmon peak shift vs the ratio of interparticle
gap to nanodisk diameter, showing that the scaled data points for the different disc sizes follow a common trend, which can be fit together to
the single-exponential decay (solid curves) y=ae " with and t=0.23 + 0.03 (From Ref. [95)).
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used to construct negative index material [100]. A similar
behavior was also observed in a pair of nanoholes in two
closely spaced metal films, which is expected to exhibit
the same properties as the nanorod pair through the
Babinet principle [101]. The nanohole pair design was
then adapted to the fishnet structure which is known
to be the most effective design for negative index [102].
Later, nanorod pairs with various different arrangements
were investigated [103]. The hybridization scheme for
various geometries is shown in Figure 9 together with the
surface change densities for various plasmon modes. Here
the hybridization scheme was obtained by the plasmon
hybridization model and the surface charge density by the
boundary integral method, both of which are described in
Section 2.4. As shown in Figure 9(a), the single nanorod
supports two resonances, longitudinal and transverse
modes where the transverse mode has a higher energy
due to the smaller transverse dimension. When the two
nanorods are placed close together, the near-field inter-
action leads to hybridization and mode splitting where
the symmetric and anti-symmetric combinations form
bonding and anti-bonding modes. In the perfectly sym-
metric arrangements of end-to-end and side-to-side
pairing, the anti-symmetric combination results in per-
fect cancellation of dipole moments. Thus the resultant
hybridized mode is dark and does not respond to the in-
cident light. Note that, unlike the nanorod pair used to
observe magnetic resonance, which has one nanorod on
top of the other so that the induced magnetic moment
can align with the incident magnetic field, these nanorod
pairs are all fabricated on the same plane and thus no mag-
netic interaction is expected. The energies of the hybridized
modes are easily understood by the electrostatic interaction

Page 17 of 27

between electronic charge densities. For example, in the
end-to-end pair, the anti-symmetric mode has the same
charge concentrated near the gap, resulting in high energy
while the symmetric mode has the opposite charge across
the gap, leading to lower energy. Thus in this case, the
symmetric mode becomes the bonding mode and the
anti-symmetric mode forms the anti-bonding mode.
For the side-to-side pair, the opposite is the case and
the symmetric mode has higher energy than the anti-
symmetric mode, making the anti-symmetric mode the
bonding mode and the symmetric mode the anti-bonding
mode. For other non-symmetric arrangements, the hybrid-
ized mode energy depends on the exact geometry. It should
be noted that both the plasmon hybridization model and
the boundary integral method used to generate Figure 9
take into account only the electrostatic interaction.
The energy levels in Figure 9(a) and (b) are thus differ-
ent from the experimentally measured plasmon peak
positions, generally blue shifted from the experimental
values due to the neglect of retardation effect.

2.3.2 Heptamers

To go beyond the simple dimer structure to more complex
nanostructures, one needs a systematic way to classify
various eigenmodes with complex symmetry properties.
The group representation theory provides a power means
to accomplish that [23]. For a given eigenvalue equation,
Ax,, = a,x,, we can define a group of symmetry operators
that leaves the operator A invariant. Note that the discus-
sion here is generally applicable to any types of eigenvalue
equations which could be the Schrédinger’s equation in
quantum mechanics, Maxwell’s equation in optics and
electromagnetics, or the fluid dynamics and surface charge
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Figure 9 Plasmon hybridization schemes for (a) nanorod dimers in different geometric arrangements and (b) nanorods initially arranged
side-to-side and then increasingly longitudinally offset as a function of the center-to-center offset. (c) Surface charge density of interacting
gold nanorods placed 1.5 nm apart and with dimensions 78 nm x 24 nm, calculated using the boundary integral method (From Ref. [103]).
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density equations used in the plasmon hybridization
model and boundary integral formalism, respectively,
discussed in Section 2.4. If a symmetry operator, S,
leaves the operator A invariant, it is straightforward to
show that the two operators commute with each other
and share the same eigenstates. If all symmetry opera-
tors that leave the operator A invariant are found, then
it is possible to classify all eigenstates of operator A in
terms of how they transform under the various sym-
metry operators. In the language of group theory, all
eigenstates of operator A can be indexed by the irredu-
cible representations of the symmetry group. Now let
us proceed to the plasmon modes in a trimer using the
group representation theory. For a trimer composed of
three identical nanoparticles placed at the corners of
an equilateral triangle, the symmetry operators that
leave the system invariant form the point group D3
and thus the eigenmodes of a trimer can be classified
by the irreducible representations of Djz;. For simpli-
city, we treat the plasmon mode of individual nanopar-
ticle as a dipole mode, which is a good approximation
for small particles. Then, the individual plasmon mode
belongs to the DY=! irreducible representation of the
full rotation group. For a trimer, we should consider
the triple direct product of D=V irreducible represen-
tations and their subsequent reduction into a combin-
ation of irreducible representations of point group D3,
which yields [104],
T primer = Ay + Ay + 2E' + AJE" (40)
The transformation properties of the various irreducible
representations of point group D3, can be found in the
character table available in the literature [23]. From the
character table, one can then construct the projection oper-
ators and generate the symmetry-adapted basis functions,
as shown in Figure 10, which transform according to
the symmetry properties of the irreducible representa-
tions. The one-dimensional irreducible representations,
A}, A,, A}, A,, have only one basis function each and
the two-dimensional irreducible representations, E', E”,
have two which are degenerate. Figure 10 is a powerful il-
lustration of the symmetry properties of the hybridized
plasmon modes. First, we notice the planar geometry of
trimer naturally separates the in-plane and out-of-plane
modes, which belong to the primed and double-primed
irreducible representations, respectively. For light inci-
dent normally to the plane of the trimer, the out-of-
plane modes are orthogonal to the incident electric
field oscillation. Therefore, only the in-plane modes
would interact with the incident light and the out-of-
plane modes would not respond. Furthermore, the two
in-plane modes, A}, A,, represent perfectly symmetric
combinations of the individual dipoles resulting in zero
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net dipole moment. These modes are therefore dark
modes which do not interact with the incident light. The
two in-plane E' modes possess net dipole moments and
are the ones that will absorb or scatter light. It should be
reminded that the actual plasmon modes excited by an in-
cident light are dependent on the precise excitation condi-
tions and would in general not be the E* modes shown in
Figure 10. Rather, they may be expressed as a linear com-
bination of the E' modes. A similar analysis has also been
carried out for a nanorod trimer [17].

The group theory provides a powerful and effective
way to describe more complex structures and extensive
studies, both theoretical and experimental, have been con-
ducted on quadrumers [56,104-106], pentamers [20,107],
and hexamers [17,18,20]. The structure that received by far
the most attention was the heptamer which is constructed
by adding a central particle to a hexamer. The main reason
for the interest has been the Fano resonance the heptamer
supports. In most systems exhibiting resonance, the
lineshape function describing the resonance is typically
Lorentzian. However, when a discrete state interacts
strongly with a continuum, a new resonance characterized
by a distinctly asymmetric lineshape function may arise,
as first discovered by Fano [108]. Since the origin of
Fano resonance is the interference between the discrete and
continuum quantum states, it is fundamentally a quantum
phenomenon. However, the interference phenomenon is
commonly observed in classical optics and Fano-like
resonances have been observed in many systems. The
oldest example is the Wood’s anomaly arising from the
interference between the tangentially diffracted wave
and the incident wave [109]. It has also been observed
in coupled waveguide-cavity systems, photonic crystals
and plasmonic nanostructures for which many reviews
are available [110-112]. In addition to the rich physics
it reveals, Fano resonance also has many technological
applications thanks to its high sensitivity to the envir-
onmental parameters [19]. Naturally, this led to the
demonstration of optical sensing based on Fano reso-
nances [113,114]. Here we review Fano resonances in
heptamers in detail.

A heptamer is composed of seven nanoparticles in a
geometry with 6-fold rotational symmetry. Six peripheral
nanoparticles form a hexamer where the nanoparticles
are placed at the corners of a regular hexagon. One cen-
tral nanoparticle is located at the center of the hexagon.
The heptamer has the same point group symmetry as
hexamer, Dg,. Since the central nanoparticle is not con-
nected to any other nanoparticles by the symmetry oper-
ators of point group Dy, the irreducible representations
for a heptamer can be found by the union of those for
the hexamer formed by the peripheral nanoparticles and
the central nanoparticle, I, =T}ex+ Leerre Similarly to
the trimer case, considering only the dipole modes of
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Figure 10 Irreducible representations and symmetric linear combinations of the /=1 dipole modes as predicted by group theory and
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the individual nanoparticles, the irreducible representations
of the hexamer, I, are found by taking the direct product
of six /=1 irreducible representations, [/~ ", of the full ro-
tation group and reducing it into the irreducible representa-
tions of the Dg;, symmetry group. Likewise, the irreducible
representation of the central nanoparticle is found by sim-
ply reducing T¥="Y. The results are as follows

Lhex = A1y + Age + B1y + Boy + 2E55 + 2E,
rcent = Elu
Chep = A1g + Agg + Bry + Boy + 2E55 + 3E1,

(40)

where we only considered the in-plane modes in these
reduction schemes. As explained earlier, the out-of-plane
dipoles will not interact with the normally incident light.
The symmetry-adapted basis functions for these irreducible
representations are shown in Figure 11(a) [115]. Since the
E irreducible representations are two-dimensional, they
have two basis functions each. It is clearly seen that only
the E;, irreducible representation exhibits a net dipole
moment and will thus interact with incident light. This

means all plasmon modes observed in experiments would
belong to the E;, mode and the mode profiles can be rep-
resented by linear combinations of the basis functions
shown in Figure 11(a). To probe the plasmon modes in a
heptamer, Mirin et al. calculated the absorption and scat-
tering spectra of a silver nanoparticle heptamer with vari-
ous sizes. As shown in Figure 11(b) and (c), in the smallest
heptamer where the individual nanoparticles have a radius
of 10 nm and are separated by 1 nm, three lowest energy
peaks are observed in agreement with the plasmon
hybridization model which predicts two bright modes
at 340 nm and 380 nm and a dark mode at 450 nm.
The bright modes are prominent in both the absorption
and scattering spectra while the dark mode is weak and
only visible in the absorption spectrum. Numerical simula-
tions showed that the bright mode has a field profile indi-
cating that the dipole moment of the central nanoparticle is
aligned to that of the hexamer while the dark mode has the
two dipoles anti-parallel, resulting in a small net dipole mo-
ment. As the particle sizes and gaps are increased propor-
tionally, all modes exhibit red shifts due to the retardation
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effect and thus deviate from the results of plasmon
hybridization which is valid only in the electrostatic regime.
The retardation effect also broadens the peaks, particularly
the bright modes, leading to a spectral overlap between the
lowest bright mode and the dark mode. This results in the
Fano resonance with its distinct asymmetric lineshape
clearly visible in the scattering spectra for silver nanoparti-
cle radii of 20 ~ 40 nm. For radius of 50 nm, the energies of
the bright and dark modes become almost the same. In the
case, the Fano resonance presents itself as an antiresonance
with a symmetric dip in the scattering spectrum.

The effect of symmetry lowering on the Fano reson-
ance is of interest to both the fundamental physics and
potential applications. Cui et al. fabricated gold hepta-
mers on a flexible poly(dimethylsiloxane) (PDMS) mem-
brane and applied mechanical stress while monitoring
the evolution of the Fano resonance [21]. As shown in
Figure 12, the Fano dip exhibited a blue shift with in-
creasing mechanical stress for the polarization along the
direction of stress while it shifted to lower frequencies
for the perpendicular polarization. Also, for the parallel
polarization, an additional Fano dip shows up at large
mechanical strain values. Figure 12 also shows scattering
spectra obtained by FEM simulations which agree very
well with the experimental spectra. The same behavior
was also confirmed by the generalized multiparticle Mie
calculations following the theory described in Section
2.2. To gain insight into the observed behavior, the ei-
genmodes of the heptamer structure were obtained by
solving the boundary integral eigenvalue equations for
the charge distribution, as described in Section 2.4. Note
that this technique is valid only in the static limit and
thus the obtained plasmon energies are not the same as

the experimentally observed peak positions. Neverthe-
less, this study allows for the analysis of the eigenmodes
with the group representation theory and thus correlate
the symmetry of the system with that of the eigenmodes.
As discussed earlier, the heptamer structure has the sym-
metry of point group Dg}, and, among the irreducible rep-
resentations of Dgy, Ep, is the only one with a net dipole
moment and thus optically active. Furthermore, we only
consider two lowest energy E;, modes in the unstressed
gold heptamer structure because all higher modes are
masked by strong absorption by gold. In the first column
of Figure 13, we show the charge distribution of the two
lowest energy E;, modes in an unstressed gold heptamer
structure composed of seven identical gold spheres where
the sphere diameter is 150 nm and gap between the
spheres is 25 nm. Here the modes shown in Figure 13(a)
and (b) belong to the lowest energy E;, mode and (d) and
(e) to the second lowest E;, mode. The two-diomensional
E,, irreducible representation represetns a doubly degen-
erate mode with two orthogonal states having net dipole
moment in the x and y directions, respectively. Accord-
ingly, the four charge distributions shown in the first
column of Figure 13 possess net dipole moment where (a)
and (d) are x-dipoles and (b) and (e) are y-dipoles. De-
pending on the energy and the relative alignment of dipole
moment of the center sphere to those of the six satelite
spheres, the E;,, modes can be classified as dark or bright
modes. The lower energy E;, mode shown in Figure 13(a)
and (b) is a dark mode where the dipole moment of center
particle aligns against the dipole moments of satelite parti-
cles, making the total dipole moment small. On the other
hand, the higher energy E;,, mode shown in Figure 13(d)
and (e) is a bright mode where the dipole moments align
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Figure 12 Mechanical tuning of gold nanoparticle heptamer. (a)-(b) show the experimentally measured and simulated extinction spectra for
mechanical stress along horizontal direction. Stretching direction and polarizations are shown in the insets. Solid line shows experiment
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together and add. The energies of these two E;, modes
were found to be 2.394 eV and 2.459 eV or 517.8 nm and
504.0 nm, respectively. These mode energy values would
be accurate only for heptamers made of very small nano-
particles, as the boundary integral method is valid in the
static limit only. For larger sizes, retardation effect will
shift and broaden the modes. The resultant overlap and
interference between the two modes lead to the Fano res-
onance. The bright mode will broaden much more signifi-
cantly than the dark mode, resulting in Fano resonance
which manifests itself in the form of a dip in the extinc-
tion spectrum as observed in Figure 12.

When the heptamer is subject to a uniaxial mechanical
stress, the symmetry of the system is lowered to Dy,
The doubly degenerate E;, mode splits into two non-
degenerate modes belonging to B,, and Bs, irreducible
representations of the point group Dyy,. Figure 13 shows
the evolution of charge distribution as the mechanical
stress is applied along the x direction. It clearly shows
the original doubly degenerate modes split into x-dipole
(B3 and y-dipole (B,,) modes. Remarkably, the nature
of the modes are preserved. That is, the bright E;, mode
splits into bright B,, and B3, modes while the dark E;,
mode spawns dark B,, and Bj, modes. Also, all modes
shift to shorter wavelengths with increasing mechanical
strain values. However, the B;, modes which have dipole

moment along the direction of mechanical stress shift
more than the B,, modes with dipole moment perpen-
dicular to the mechanical stress. This leads to the dis-
tinct polarization dependence observed in Figure 12 as
the B3, modes interact with x-polarized light and B,,
with y-polarized light. Therefore, as the heptamer is
stretched along the x direction, x-polairzed light would
show resonance features at shorter wavelengths than the
y-polarized light. Even when the retardation effects are
included and the resonance peaks broaden and shift, this
general behavior survives and leads to the experimental
observation in Figure 12: the dip in the extinction spectrum
due to the Fano resonance blue shifts for polarization paral-
lel to the direction of mechanical stress but red shifts for
polarization perpendicular to it. The exact numerical simu-
lations by FEM and generalized multiparticle Mie theory
also confirmed this.

In addition to the splitting of E;, modes leading to the
poalrization dependence, the scattering spectra for x
polarization also show an additional dip at shorter wave-
lengths. The additional dip is apparent in the spectra for
30% and 45% strain for x polarization but is clearly miss-
ing in all spectra for y polarization. The origin of this
second dip can be found by the group theoretical ana-
lysis. Briefly reiterating, in the unstressed heptamer
structure possessing Dg;, symmetry, only the E;, modes
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Figure 13 The evolution of charge distribution with uniaxial stress along the x direction. The first column shows the two lowest E;,
modes of unstressed heptamer and the B;, mode. Second and third columns show B, and Bz, modes of the heptamer under 10% and 30%
strains, respectively. The resonance wavelengths of the heptamers are also shown in paraenthesis (From Ref. [21]).
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have non-zero dipole moments and thus are optically ac-
tive. When the symmetry is lowered to D, by uniaxial
stress, the E;, modes split into B,, and Bz, modes which
interact with x- and y-polarized light, respectively. Since
the unstressed heptamer has two E;, modes in the

frequency range of interest, we obtain two B,, and two
B3, modes, producing Fano resonance just as in the
original unstressed heptamer. However, what is miss-
ing in this narrative is that the optically inactive By,
mode in the unstressed heptamer becomes optically
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active B3, mode under uniaxial stress along the x dir-
ection. As shown in Figure 13(c), the charge distribu-
tion reveals that this B3, mode is also a dark mode
where the dipole moment of the center sphere aligns
anti-parallel against those of the satelite spheres,
thereby producing a second Fano dip in the scattering
spectra. In constrast, there are no other modes of the
unstressed heptamer evolving into B,, mode within
the frequency range we investigated and thus we do
not see any additional dip for the y polarization.

Now we can take a step further and study which di-
pole components contribute to the formation of Fano
resonance. For this, we consider nanorod heptamers
composed of a circular center particle surrounded by six
nanorods [22]. A circular nanoparticle supports a degen-
erate dipole mode with two orthogonal dipole moments
having the same energy. The anisotropy of nanorod,
however, lifts this degeneracy and the transverse mode
has a substantially different energy than the longitudinal
mode. This allows us to probe how the each dipole
components hybridize separately. This design principle
is schematically shown in Figure 14(a). The doubly de-
generate dipole modes of the circular particle can be
arranged into azimuthal dipoles and radial dipoles ac-
cording to the six-fold rotational symmetry of the hep-
tamer structure. We then replace the circular satellite
particles with nanorods arranged azimuthally and radi-
ally. By designing the nanorod dimensions so that only
the longitudinal modes are in the frequency range of
interest, we can construct heptamers with only the azi-
muthal dipoles and radial dipoles. Subsequent numer-
ical simulations revealed that the azimuthal nanorod
heptamer exhibits a strong and well-defined Fano res-
onance (Figure 14(b)) but the radial nanorod heptamer
does not support Fano resonance (Figure 14(c)). We
then conducted a series of numerical simulations for a
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wide range of structural parameters to find that the azi-
muthal nanorod heptamers always support Fano reson-
ance but the radial nanorod heptamers do not. These
results indicate that the Fano resonance observed in circu-
lar heptamers are the result of hybridization of azimuthal
dipole modes of the satellite particles with the center par-
ticle and that the radial dipole modes do not contribute.
The Fano resonance supported by the azimuthal nanorod
heptamer was further investigated for their behavior under
mechanical stress and symmetry lowering. As before,
the mechanical stress was applied along the x (horizontal)
direction. Figure 15 shows the simulated extinction and
absorption spectra at the induced mechanical strain values
of 0%, 13%, 26%, and 42%. For the polarization parallel to
the mechanical stress (x direction), the Fano resonance ex-
hibited a moderate blue shift while for the perpendicular
polarization it showed a small blue shift. In addition to the
spectral shifts with applied mechanical stress, the absorp-
tion spectra for the perpendicular polarization showed an
additional feature at shorter wavelengths when the hepta-
mer was under mechanical stress. This feature located
near 620 nm was particularly noticeable at high strain
values of 26% and 42%. The behavior of the spectral fea-
tures in Figure 15 can be explained by analyzing the eigen-
modes obtained by the boundary integral method. The
evolution of charge distribution is dictated mainly by the
symmetry reduction from Dg}, to Doy, and is similar to that
observed in the circular heptamer under mechanical stress
described earlier. As was the case in the circular heptamer,
the doubly degenerate E;, mode of the azimuthal nanorod
heptamer splits into two non-degenerate modes belonging
to By, (y-dipole) and B3, (x-dipole) irreducible representa-
tions of the point group Dy, Furthermore, the bright E;,
mode was found to split into bright B,, and Bz, modes
and the dark E;, mode into dark B,, and B3, modes. Both
the dark and bright B,, and B3, modes shift to shorter
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wavelengths with increasing mechanical strain values.
However, the Bz, modes, which have dipole moment
along the direction of mechanical stress, shifts more
than the B,, modes whose dipole moment is perpendicular
to the mechanical stress, leading to the polarization
dependence observed in the extinction and absorption
spectra in Figure 15. Once again, the retardation effect
results in overlap and interference between the dark and
bright modes thus causing the Fano resonance to be
observed as a dip in the extinction spectrum.

The additional absorption peak observed under stress
can be explained by noting that the optically inactive B,,
mode in the unstressed heptamer becomes an optically
active B, mode under uniaxial stress along the x direction.
Here we have an unfortunate coincidence of having the
same label for two very different modes. The By, irreducible

representation in Dg, symmetry has no net dipole moment
and thus represents an optically inactive mode. However,
the By, irreducible representation in Dy, symmetry has
a finite dipole moment along the y-direction and thus
represents an optically active mode that can interact
with y-polarized light. The energy of this B,, mode is
higher than the lowest dark B,, mode originating from
the dark E;, mode of unstressed heptamer, thereby
producing an additional feature at a higher energy. The
azimuthal nanorod heptamer differs from the circular
heptamer in the behavior of this optically active mode. In
the circular heptamer, the optically inactive B;, mode was
located between the two lowest energy E;, modes in the
unstressed heptamer and became optically active B3, mode
under uniaxial stress along the x direction. As a result, in
the circular heptamer, the additional mode was observed
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for x-polarized light. The difference between the circular
heptamer and azimuthal nanorod heptamer is readily
understood by comparing the eigenmode charge distribu-
tions. In the B;, mode observed in the unstressed circular
heptamer, the satellite particles have their dipole moments
aligned along the radial direction (Figure 13c). In the azi-
muthal nanorod heptamer, this configuration would have
had a much higher energy because the radial dimensions
of the nanorods are much smaller than the circular parti-
cles used in circular heptamer. On the other hand, the B,,
mode in which the satellite particles have their dipole
moments aligned along the azimuthal direction has a
lower energy because the nanorods have larger dimensions
along that direction. For these reasons, we find the By,
mode is located between the two lowest energy E;, modes
in the azimuthal nanorod heptamer structure. These behav-
iors predicted by the theoretical modeling studies have been
confirmed by experiments on gold nanorod heptamers
fabricated by electron-beam lithography [22].

3 Conclusion and outlook

Plasmonics in mutually interacting nanostructures is an
exciting field with rich physics and numerous potential
applications. The recent progress clearly demonstrates
that plasmonic nanostructures allow us to precisely
control the nanoscale optical modes and how they
interact with one another. These capabilities make the
coupled plasmonic nanostructures an ideal platform to
study nanoscale optical phenomena and build optical
devices with novel functionalities. Though fundamentally a
quantum mechanical entity, surface plasmons can be de-
scribed well by classical electrodynamics in most cases. The
theoretical framework presented in this review provides a
firm foundation for designing interesting structures and
analyzing their properties. Also, the strong field enhance-
ment near the metal surface and the complex field profiles
resulting from the interaction among the nanostructures
makes the optical properties highly sensitive to the environ-
ment and consequently leads to exotic properties such as
perfect absorption, invisibility and Fano resonance.

Some of the latest developments in the coupled plas-
monic systems deal specifically with the quantum mech-
anical nature of the phenomenon. In surface enhanced
Raman scattering and many other applications, it is gen-
erally advantageous to achieve high local field strength.
In the simplest geometry of a dimer, a smaller gap sup-
ports higher field. However, when the two nanoparticles
in a dimer are nearly touching, the electrons may tunnel
through the gap, resulting in a dramatic decrease of
local field strength and shift of plasmon energy [26,116].
Furthermore, at such a small length scale, the abrupt
interface between two materials is unrealistic and the
non-locality of the dielectric function has to be considered
[117]. These considerations have led to the development
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of a quantum-corrected model that could correctly repro-
duce the fully quantum mechanical calculations [118].
Unveiling the quantum mechanical nature of the gap
plasmons in extremely small gaps remains an active re-
search field with hopes of discovering new physics and also
with potential for developing novel quantum devices.

Another interesting subject of fundamentally quantum
nature is the coupling between plasmon and atomic or
molecular exciton. The interaction between plasmon
and exciton is of great fundamental interest with
strong technological implications in organic electron-
ics and photovoltaics. It has been shown that the surface
plasmon can be used to control the relaxation pathways of
molecular excitons [119]. Furthermore, in a fashion similar
to plasmon hybridization, atomic or molecular exciton can
hybridize with plasmon, forming a new quantum mechan-
ically entity sometimes called plexciton [120,121]. The
strong coupling between plasmon and exciton has recently
been observed in an organic photovoltaic material [122].
The strong interaction could result in dramatic changes in
excitation and relaxation dynamics of the molecular exci-
tons, opening new opportunities in controlling and engin-
eering the optical processes in organic materials.

In closing, surface plasmons provide a powerful means
to gain access to the near field components that could
result in a wide range of unconventional properties.
Controlling and manipulating the mutual interactions
among the plasmonic nanostructures offer design flexibility
and engineering freedom unparalleled by any other photon-
ics technologies. Obtaining high quality materials with low
loss in precise nanoscale geometry will continue to be a
challenge but the remarkable progress in nanofabrication
technologies in the past decades makes it a perfect time to
invest in research on the plasmonic nanostructures.
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