1,615 research outputs found

    Short-Baseline Electron Neutrino Disappearance, Tritium Beta Decay and Neutrinoless Double-Beta Decay

    Full text link
    We consider the interpretation of the MiniBooNE low-energy anomaly and the Gallium radioactive source experiments anomaly in terms of short-baseline electron neutrino disappearance in the framework of 3+1 four-neutrino mixing schemes. The separate fits of MiniBooNE and Gallium data are highly compatible, with close best-fit values of the effective oscillation parameters Delta m^2 and sin^2 2 theta. The combined fit gives Delta m^2 >~ 0.1 eV^2 and 0.11 < sin^2 2 theta < 0.48 at 2 sigma. We consider also the data of the Bugey and Chooz reactor antineutrino oscillation experiments and the limits on the effective electron antineutrino mass in beta-decay obtained in the Mainz and Troitsk Tritium experiments. The fit of the data of these experiments limits the value of sin^2 2 theta below 0.10 at 2 sigma. Considering the tension between the neutrino MiniBooNE and Gallium data and the antineutrino reactor and Tritium data as a statistical fluctuation, we perform a combined fit which gives Delta m^2 \simeq 2 eV and 0.01 < sin^2 2 theta < 0.13 at 2 sigma. Assuming a hierarchy of masses m_1, m_2, m_3 << m_4, the predicted contributions of m_4 to the effective neutrino masses in beta-decay and neutrinoless double-beta-decay are, respectively, between about 0.06 and 0.49 and between about 0.003 and 0.07 eV at 2 sigma. We also consider the possibility of reconciling the tension between the neutrino MiniBooNE and Gallium data and the antineutrino reactor and Tritium data with different mixings in the neutrino and antineutrino sectors. We find a 2.6 sigma indication of a mixing angle asymmetry.Comment: 14 pages; final version published in Phys.Rev.D82:053005,201

    The Physical Significance of Confidence Intervals

    Full text link
    We define some appropriate statistical quantities that indicate the physical significance (reliability) of confidence intervals in the framework of both Frequentist and Bayesian statistical theories. We consider the expectation value of the upper limit in the absence of a signal (that we propose to call "exclusion potential", instead of "sensitivity" as done by Feldman and Cousins) and its standard deviation, we define the "Pull" of a null result, expressing the reliability of an experimental upper limit, and the "upper and lower detection functions", that give information on the possible outcome of an experiment if there is a signal. We also give a new appropriate definition of "sensitivity", that quantifies the capability of an experiment to reveal the signal that is searched for at the given confidence level.Comment: 16 page

    The Power of Confidence Intervals

    Get PDF
    We consider the power to reject false values of the parameter in Frequentist methods for the calculation of confidence intervals. We connect the power with the physical significance (reliability) of confidence intervals for a parameter bounded to be non-negative. We show that the confidence intervals (upper limits) obtained with a (biased) method that near the boundary has large power in testing the parameter against larger alternatives and small power in testing the parameter against smaller alternatives are physically more significant. Considering the recently proposed methods with correct coverage, we show that the physical significance of upper limits is smallest in the Unified Approach and highest in the Maximum Likelihood Estimator method. We illustrate our arguments in the specific cases of a bounded Gaussian distribution and a Poisson distribution with known background.Comment: 13 pages, 5 figure

    Statistical Analysis of Solar Neutrino Data

    Get PDF
    We calculate with Monte Carlo the goodness of fit and the confidence level of the standard allowed regions for the neutrino oscillation parameters obtained from the fit of the total rates measured in solar neutrino experiments. We show that they are significantly overestimated in the standard method. We also calculate exact allowed regions with correct frequentist coverage. We show that the exact VO, LMA and LOW regions are much larger than the standard ones and merge together giving an allowed band at large mixing angles for all Delta m^2 > 10^{-10} eV^2.Comment: 4 pages. Talk presented by C. Giunti at NOW 2000, Conca Specchiulla (Otranto, Italy), 9-16 Sep. 200

    Lepton Numbers in the framework of Neutrino Mixing

    Get PDF
    In this short review we discuss the notion of lepton numbers. The strong evidence in favor of neutrino oscillations obtained recently in the Super-Kamiokande atmospheric neutrino experiment and in solar neutrino experiments imply that the law of conservation of family lepton numbers L_e, L_mu and L_tau is strongly violated. We consider the states of flavor neutrinos nu_e, nu_mu and nu_tau and we discuss the evolution of these states in space and time in the case of non-conservation of family lepton numbers due to the mixing of light neutrinos. We discuss and compare different flavor neutrino discovery experiments. We stress that experiments on the search for nu_mu->nu_tau and nu_e->nu_tau oscillations demonstrated that the flavor neutrino nu_tau is a new type of neutrino, different from nu_e and nu_mu. In the case of neutrino mixing, the lepton number (only one) is connected with the nature of massive neutrinos. Such conserved lepton number exist if massive neutrinos are Dirac particles. We review possibilities to check in future experiments whether the conserved lepton number exists.Comment: 20 page
    • …
    corecore