71 research outputs found

    Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence

    Get PDF
    Patients with end-stage kidney disease (ESKD) are at high risk of severe COVID-19. Here, we perform longitudinal blood sampling of ESKD haemodialysis patients with COVID-19, collecting samples pre-infection, serially during infection, and after clinical recovery. Using plasma proteomics, and RNA-sequencing and flow cytometry of immune cells, we identify transcriptomic and proteomic signatures of COVID-19 severity, and find distinct temporal molecular profiles in patients with severe disease. Supervised learning reveals that the plasma proteome is a superior indicator of clinical severity than the PBMC transcriptome. We show that a decreasing trajectory of plasma LRRC15, a proposed co-receptor for SARS-CoV-2, is associated with a more severe clinical course. We observe that two months after the acute infection, patients still display dysregulated gene expression related to vascular, platelet and coagulation pathways, including PF4 (platelet factor 4), which may explain the prolonged thrombotic risk following COVID-19

    Self-sensing dielectric elastomer actuators in closed-loop operation

    Get PDF
    Because of their large output strain, dielectric elastomer actuators (DEAs) have been proposed for tunable optics applications such as tunable gratings. However, the inherent viscoelastic drift of these actuators is an important drawback and closed-loop operation of DEAs is a prerequisite for any accurate real-world application. In this paper, we show how capacitive self-sensing can be used to drive a DEA in closed-loop without the need for any external sensor. The method has been demonstrated on a DEA tunable grating based on a VHB acrylic and silicone membrane. The results show that the widely used VHB presents a time-dependent drift between the capacitance of the electrodes and their strain. The silicone-based grating does not exhibit such a drift, and its strain can be stabilized by regulating the capacitance of the device to a constant value. We also report on an new fabrication method for thin deformable gratings based on replication on a water-soluble master and a 27% change in the grating period has been obtained on a VHB-based device

    MTDATA and the prediction of phase equilibria in oxide systems : 30 years of industrial collaboration

    Get PDF
    This paper gives an introduction to MTDATA, Phase Equilibrium Software from the National Physical Laboratory (NPL), and describes the latest advances in the development of a comprehensive database of thermodynamic parameters to underpin calculations of phase equilibria in large oxide, sulfide, and fluoride systems of industrial interest. The database, MTOX, has been developed over a period of thirty years based upon modeling work at NPL and funded by industrial partners in a project co-ordinated by Mineral Industry Research Organisation. Applications drawn from the fields of modern copper scrap smelting, high-temperature behavior of basic oxygen steelmaking slags, flash smelting of nickel, electric furnace smelting of ilmenite, and production of pure TiO2via a low-temperature molten salt route are discussed along with calculations to assess the impact of impurities on the uncertainty of fixed points used to realize the SI unit of temperature, the kelvin

    Longitudinal proteomic profiling of dialysis patients with COVID-19 reveals markers of severity and predictors of death

    Get PDF
    End-stage kidney disease (ESKD) patients are at high risk of severe COVID-19. We measured 436 circulating proteins in serial blood samples from hospitalised and non-hospitalised ESKD patients with COVID-19 (n=256 samples from 55 patients). Comparison to 51 non-infected patients revealed 221 differentially expressed proteins, with consistent results in a separate subcohort of 46 COVID-19 patients. 203 proteins were associated with clinical severity, including IL6, markers of monocyte recruitment (e.g. CCL2, CCL7), neutrophil activation (e.g. proteinase-3) and epithelial injury (e.g. KRT19). Machine learning identified predictors of severity including IL18BP, CTSD, GDF15, and KRT19. Survival analysis with joint models revealed 69 predictors of death. Longitudinal modelling with linear mixed models uncovered 32 proteins displaying different temporal profiles in severe versus non-severe disease, including integrins and adhesion molecules. These data implicate epithelial damage, innate immune activation, and leucocyte-endothelial interactions in the pathology of severe COVID-19 and provide a resource for identifying drug targets

    Low Cost Tuberculosis Vaccine Antigens in Capsules: Expression in Chloroplasts, Bio-Encapsulation, Stability and Functional Evaluation In Vitro

    Get PDF
    Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6kDa early secretory antigenic target) and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39) fused with cholera toxin B-subunit (CTB) and LipY (a cell wall protein) were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential for long-term storage at room temperature. To our knowledge, this is the first report of expression of TB vaccine antigens in chloroplasts
    • …
    corecore