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Multi-omics identify falling LRRC15 as a
COVID-19 severity marker and persistent
pro-thrombotic signals in convalescence
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Candice L. Clarke1,2, Talat H. Malik1, Nicholas Medjeral-Thomas1,2,
Damiola Pinheiro1, Paige M. Mortimer1, Shanice Lewis1, Eleanor Sandhu1,2,
Stephen P. McAdoo1,2, Maria F. Prendecki 1,2, Michelle Willicombe1,2,
Matthew C. Pickering 1, Marina Botto 1, David C. Thomas 1,2,4 &
James E. Peters 1,4

Patients with end-stage kidney disease (ESKD) are at high risk of severe COVID-
19. Here, we perform longitudinal blood sampling of ESKD haemodialysis
patients with COVID-19, collecting samples pre-infection, serially during
infection, and after clinical recovery. Using plasma proteomics, and RNA-
sequencing and flow cytometry of immune cells, we identify transcriptomic
and proteomic signatures of COVID-19 severity, and find distinct temporal
molecular profiles in patients with severe disease. Supervised learning reveals
that the plasma proteome is a superior indicator of clinical severity than the
PBMC transcriptome. We show that a decreasing trajectory of plasma LRRC15,
a proposed co-receptor for SARS-CoV-2, is associated with a more severe
clinical course. We observe that twomonths after the acute infection, patients
still display dysregulated gene expression related to vascular, platelet and
coagulation pathways, including PF4 (platelet factor 4), whichmay explain the
prolonged thrombotic risk following COVID-19.

COVID-19, caused by the SARS-CoV-2 virus, is a highly heterogeneous
disease. In most individuals, it is a mild, self-limiting illness, but some
individuals develop severe disease, typicallymanifesting as respiratory
failure with marked systemic inflammation and immunopathology.
Multiple studies have described immunological1,2, transcriptomic3–11,
and proteomic12–20 correlates of severe disease. The importance of an
aberrant host immune response in tissue injury in severe COVID-19 is
supported by the efficacy of anti-inflammatory treatments. These
include glucocorticoids21, monoclonal antibodies blocking the
interleukin-6 receptor22,23, and the Janus kinase (JAK) inhibitor
baricitinib24. A wide range of additional therapies directed at specific
elements of the inflammatory response has been developed for
immuno-inflammatory diseases and present potential repurposing

opportunities for the treatment of severe COVID-19. Understanding
the molecular basis for severe COVID-19 is important for the rational
selection of such therapies.

Risk factors for severe COVID-19 include age, male sex, and the
presence of comorbidities such as chronic kidney disease (CKD). In
CKD, the risk of severe COVID-19 is proportional to the degree of renal
impairment25. End-stage kidney disease (ESKD) confers particularly
high risk, with a population-based study estimating a hazard ratio for
death of 3.6925 and a European registry study reporting 23.9% 28-day
mortality in dialysis patients with COVID-1926. In part, this is because
ESKD patients are enriched for other risk factors for severe COVID-19,
including cardiometabolic disease. However, even after adjustment for
these, ESKD remains independently associated with the risk of severe
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COVID-19. In addition, ESKD patients display impaired vaccine
responses27,28, and those on in-centre haemodialysis cannot shield
effectively during lockdowns as they need to access dialysis facilities
regularly.

Here, we investigated the host response to SARS-CoV-2 in ESKD
patients on haemodialysis since study of such an at-risk group should
enhance the probability of identifying severity signals and might also
point to either an exaggerated or even distinct immunological
response to the virus. Moreover, ESKD patients receiving haemodia-
lysis present an opportunity for serial blood sampling of both out-
patients and inpatients with COVID-19, since patients must attend
medical facilities for regular dialysis regardless of COVID-19 severity.
This enabled us to perform longitudinal analysis and avoid the selec-
tion bias that affects studies limited solely to hospitalised patients.

The host response to SARS-CoV-2 is orchestrated by a complex
network of cells and mediators, including circulating proteins such as
cytokines and soluble receptors. Soluble proteins play key roles in
multiple biological processes, including signalling, host defence and
repair, and are potential biomarkers and therapeutic targets. We
therefore hypothesised that a comprehensive analysis of both circu-
lating proteins and immune cells should yield valuable and com-
plementary insights into thepathobiologyofCOVID-19. To this end,we
used the aptamer-based SomaScan platform that provides broad
coverage of the plasma proteome (6323 proteins), combined with
RNA-sequencing and flow cytometry of peripheral bloodmononuclear
cells (PBMCs). We integrated these data to provide a comprehensive
view of the COVID-19 multi-omic landscape, enabling us to link tran-
scriptomic and cellular changes with circulating proteins. Supervised
learning identified plasma levels of the LRRC15 protein, a recently
proposed alternative receptor for SARS-CoV-2, as a marker of disease
severity. By comparing pre-infection samples to samples collected
from the same individuals during COVID-19 and after clinical recovery,
we revealed persistent upregulation of gene expression signatures
related to vascular and clotting pathways several months after infec-
tion. These findings elucidate the biological underpinnings of the
prolonged pro-thrombotic state associated with COVID-19.

Results
Features of patient cohorts
We recruited two cohorts of ESKD patients on haemodialysis pre-
senting with COVID-19 (Fig. 1a). The Wave 1 cohort consisted of 53
patients recruited during the initial phase of the COVID-19 pandemic
(April-May 2020) (Supplementary Table 1). Serial blood sampling was
carried out where feasible (Fig. 1b), given the pressure on hospital
services and the effects of national lockdown. We assessed disease
severity using a WHO four-level ordinal score, categorising it into
mild, moderate, severe, and critical. Of the 53 patients, 25 had a peak
illness severity score of severe or critical (hereafter severe/critical)
and 28mild ormoderate (mild/moderate). Nine died. Themajority of
patients were of non-European ancestry. Further clinical and demo-
graphic details are provided in Supplementary Table 1. We also
contemporaneously recruited 59 non-infected haemodialysis
patients to provide a control group, selected to mirror the age, sex
and ethnicity distribution of the COVID-19 cases (Supplementary
Fig. 1a–c).

The Wave 2 cohort consisted of 17 ESKD patients with COVID-19,
infected during the resurgence of cases in January-March 2021 (Sup-
plementary Table 2). All had been recruited as part of the COVID-19
negative control group during Wave 1, thereby providing a pre-
infection sample collected 8–9 months earlier. For the Wave 2 cohort,
we systematically acquired serial samples for all patients at regular
intervals (every 2–3days over the courseof the acute illness) (Fig. 1c). 9
patients had a peak illness severity of severe/critical (of whom 4 died),
and 8 mild/moderate. For 12 of these patients, we acquired con-
valescent samples approximately two months following infection.

The effect of COVID-19 on the PBMC transcriptome and plasma
proteome in ESKD patients
We performed transcriptomic profiling using RNA-seq of PBMCs.
Principal components analysis (PCA) revealed a clear effect of COVID-
19 in both Wave 1 (COVID-19 positive and negative patient samples)
and Wave 2 (pre-infection and subsequent COVID-19 positive samples
from the same individuals) (Fig. 2a). In the Wave 1 cohort, differential
gene expression analysis between COVID-19 positive (n = 179 samples
from 51 patients) and negative samples (n = 55) (using linear mixed
models (LMM) to account for repeated samples from the same indi-
viduals) identified 3026 significantly up-regulated and 3329 down-
regulated genes (1% false discovery rate, FDR) (Supplementary
Data 1a). Sensitivity analyses exploring the effects of including addi-
tional clinical covariates (underlying cause of ESKD, diabetes, and time
since first commencing haemodialysis) in themodel did notmaterially
impact the results (SupplementaryMaterial, SupplementaryFig. 2). For
the Wave 2 cohort, where we compared COVID-19 positive samples
(n = 90 samples from 17 individuals) with pre-infection samples from
these same individuals, we identified 2871 up-regulated and 3325
down-regulated genes (1% FDR, LMM) (Supplementary Data 1a). These
findings demonstrate widespread transcriptomic changes associated
with COVID-19. 3468 genes were significantly differentially expressed
(1% FDR) in both the Wave 1 and 2 cohorts. However, this approach of
intersecting lists of significant features based on a hard statistical
threshold will underestimate commonality between two datasets29. To
provide a measure of consistency that is not dependent on the sig-
nificance threshold, we compared the estimated effect size (log2 fold
change) between COVID-19 positive and negative samples for each
gene in theWave 1 andWave 2 cohorts. These were highly concordant
(Pearson’s r 0.80) (Supplementary Fig. 3a), despite differences in the
prevalent SARS-CoV-2 variant and developments in medical manage-
ment (8 of 17 patients in the Wave 2 cohort received glucocorticoids).
To identify the genes that were consistently differentially expressed
across both cohorts, we used robust rank aggregation (RRA) (Sup-
plementary Data 1a, Supplementary Fig. 4).

To gain insight into the biological pathways underlying these
changes, we used Gene Set Variation Analysis (GSVA)30 to compare
COVID-19 positive and negative ESKD samples (Supplementary
Data 1b). Enriched pathways included those related to cell cycle (e.g.,
‘Polo-like kinase mediated events’, which are involved in the cellular
response to DNA damage) and host defence (e.g., ‘Complement cas-
cade’, ‘Fc-gamma receptor-dependent phagocytosis’, and ‘Parasite
infection’) (Supplementary Fig. 5). This analysis also highlighted
leucocyte-endothelial interactions (‘Cell surface interactions at the
vascular wall’, which included SELL and CEACAM-1, -3, -6 and -8 genes).
Examples of marked changes in gene expression between pre-
infection and acute infection in the Wave 2 cohort included compo-
nents of ‘Immunoregulatory interactions between a lymphoid and a
non-lymphoid cell’ pathway term (e.g., SIGLEC1, SIGLEC9, SELL, all
increased) and ‘Development andheterogeneity of the ILC family’ (e.g.,
IFNG, GATA3, RORA, all decreased) (Fig. 2b).

We next assessed the circulating proteome, measuring 6323
proteins using the SomaScan platform (Supplementary Data 1c). PCA
showed clear differences between COVID-19 positive and negative
samples (Fig. 2a). We identified 1273 differentially abundant proteins
between COVID-19 positive and negative samples in Wave 1 (86 sam-
ples from 37 COVID-19 positive ESKD patients versus 53 non-infected
ESKD patient samples, LMM) (Supplementary Data 1d, Supplementary
Fig. 6). In Wave 2, comparison of COVID-19 positive samples
(n = 102 samples from 17 patients) with pre-infection samples from the
same individuals identified 5265 differentially abundant proteins. The
effect sizes were generally concordant between the cohorts (Pearson’s
r 0.57) (Supplementary Fig. 3b), and 730 proteins were significantly
differentially abundant (1% FDR) in both the Wave 1 and 2 datasets. As
for our transcriptomic analysis, weusedRRA to rank the consistency of
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Fig. 1 | Study design and cohort summary. a Graphical summary of the patient
cohorts, sampling, and major analyses. Wave 1 patients were recruited in Spring
2020. 17 of the COVID-19 negative ESKD patients recruited as a controls in Wave 1
were recruited again as COVID-19 positive cases in Wave 2 (2021). For 12/13 survi-
vors in Wave 2, we obtained a convalescent sample approximately 2 months fol-
lowing recovery. Thus, forWave 2, we had paired pre-infection, acute infection and

post-infection samples from the same individuals. b, c For each cohort, the timing
of the serial blood sampling is shown by triangles and the temporal COVID-19
severity by coloured bars. Three patients were hospitalised prior to COVID-19
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fatal outcomes died >30 days from first positive swab.
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Fig. 2 | Signatures of COVID-19 in ESKD. a PCA of the PBMC transcriptome (left)
and plasma proteome (right). Each point represents a sample and is coloured by
COVID-19 status. b Paired violin plots showing intra-individual comparisons of pre-
infection and most severe sample (Wave 2 cohort; n = 34 samples from 17 indivi-
duals) during COVID-19 for selected genes. Grey lines link each individual’s pre-
infection and infection samples; these samples are represented by points and
coloured by COVID-19 status. Shaded areas indicate kernel density estimates. For
boxplots, centre = median, upper bound = upper quartile, lower bound = lower
quartile. All genes shown were significantly differentially expressed (1% FDR) in

both cohorts. Genes are grouped by membership to pathways that were sig-
nificantly enriched (1% FDR) in GSVA. c The 30 protein pathway enrichment terms
with the greatest RRA scores (indicating consistent dysregulation in both theWave
1 andWave 2 proteomic datasets), ordered by effect size. All pathway terms shown
were significantly enriched in the individual cohort analyses (1% FDR). Red= up-
regulated in COVID-19 positive versus negative; blue= down-regulated. d As for
b, but displaying selected plasma proteins (significant at 1% FDR) (n = 32 samples
from 16 individuals).
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differentially abundant proteins across the cohorts (Supplementary
Data 1d).

Enrichment analysis revealed upregulation of pathways,
including ‘DDX58/IFIH1 mediated induction of interferon-alpha/
beta’, ‘Wilk et al., 2021 IFN module’31, ‘Host-pathogen interaction of
human coronaviruses interferon induction’ and ‘SARS-CoV-2 innate
immunity evasion and cell-specific immune response’, reflecting
host anti-viral responses and providing validation of our analysis
(Fig. 2c, Supplementary Data 1e). Highly up-regulated proteins
within these pathways included STAT1; DDX58 and ISG15, both
crucial to the IFN-mediated antiviral response in COVID-1932;
IFITM3, which is up-regulated in lung epithelial cells during early
SARS-CoV-2 infection33; and the chemokines CXCL11, CXCL1,
CXCL6, CXCL5 and CXCL10. Another significantly up-regulated
pathway was ‘Senescence-associated secretory phenotype’, which
included up-regulated ubiquitin-conjugating enzymes (UBE2S,
UBE2E1), histones (H2BC21, H2BU1) and STAT3 (Fig. 2d). Down-
regulated pathways included ‘Integrin cell surface interactions’
and ‘Collagen biosynthesis and modifying enzymes’ which con-
tained collagen proteins (e.g., COL11A2, COL13A1, COL15A1) and
related enzymes (e.g., P4HB, PCOLCE) (Fig. 2d).

Transcriptomic and proteomic changes associated with
COVID-19 severity
In both cohorts, the PCA of the PBMC transcriptomics revealed dif-
ferences according to both severity at time of sampling and overall
clinical course (defined by peak severity score) (Fig. 3a). There was a
gradient of severity reflected in the molecular phenotype. We next
assessed molecular features associated with severity at time of blood
sampling, encoded as an ordinal variable. We identified 3522 genes
that were significantly associated with contemporaneous severity in
the Wave 1 cohort and 657 genes in the Wave 2 cohort (LMM, 1% FDR,
Supplementary Data 1f, Supplementary Fig. 7). 363 genes were sig-
nificantly associated in both cohorts.We then applied GSVA to identify
pathways and used RRA to combine results from each cohort (Sup-
plementary Data 1g).

The up-regulated transcriptomic pathways inmore severe disease
included those involved in oxidative stress (‘Glutathione metabolism’,
‘Detoxification of reactive oxygen species’), ‘Transcriptional regulation
of granulopoiesis’, pathways containing numerous histone-encoding
genes (‘HDACs deacetylate histones’, ‘Diseases of programmed cell
death’, ‘RHO GTPases activate PKNs’) and ‘Complement and coagula-
tion cascades’ (Fig. 3b, c, Supplementary Data 1g). Down-regulated
pathway terms included ‘TCRA pathway’, ‘Pathogenesis of SARS-CoV-2
mediated by nsp9-nsp10 complex’, ‘TP53 activity’, and ‘PD1 signalling’,
suggesting T cell activation in more severe COVID-19 (Fig. 3b, c, Sup-
plementary Data 1g).

PCA of the proteomic data revealed differences according to
clinical severity (Supplementary Fig. 8a). We found 148 and 1625 pro-
teins associated (LMM, 1% FDR) with disease severity in the Wave 1 (86
COVID-19 positive samples) and Wave 2 (102 COVID-19 positive sam-
ples) datasets, respectively (Supplementary Data 1h, Supplementary
Fig. 9). 98 proteins were associated with severity in both datasets.
Pathway analysis identified 15 severity-associated pathway terms that
reached statistical significance (1% FDR) in both cohorts (Supplemen-
tary Fig. 8b, Supplementary Data 1I). Among the most upregulated
pathways in more severe disease were ‘HDACs deacetylate histones’,
pathways related to transcriptional regulation (e.g., ‘mRNA splicing
minor pathway’, ‘Spliceosome’, ‘RNA polymerase II transcription ter-
mination’, ‘Processing of capped intron-containing pre- mRNA’) and
‘RUNX1 regulates genes involved inmegakaryocyte differentiation and
platelet function’, while the most down-regulated pathways included
‘PD-1 signalling’ and ‘T-cell receptor and costimulatory signalling’.
Example proteins from these pathways are shown in Supplemen-
tary Fig. 8c.

Severe COVID-19 is associated with dynamic multi-omic
modular trajectories
We next examined the temporal trajectories of the transcriptome and
the proteome during COVID-19 by explicitly modelling molecular
profiles with respect to time following symptom onset (Methods). To
aid biological interpretation, we first applied a dimension reduction
strategy using weighted gene correlation network analysis (WGCNA)34.
WGCNA identified 23 modules of co-expressed genes (which we
denote with the prefix t) (Supplementary Data 1j), and 12 proteomic
modules (denoted with p) (Supplementary Data 1k). Longitudinal
modelling revealed 8 transcriptomic and 5 proteomic modules with
significantly (5% FDR) different temporal patterns in patients with
mild/moderate versus severe/critical disease (LMM time x clinical
course (TxCC) interaction—Methods) (Supplementary Tables 3-4).
Typically, the modules displayed a flat temporal profile in mild/mod-
erate COVID-19, whereas there was a dynamic profile in severe/critical
disease (Fig. 4a, Supplementary Fig. 10). Somemodules rose with time
in severe/critical patients (e.g., tB, tL, p9 and p12), while others drop-
ped (e.g., tC, tP, tI, p7). Examples of individual genes from module tB
exhibiting this behaviour include MMP9, ORM1, LRRN1 (Fig. 4b).

We identified significant associations between modules, with
transcriptomic and proteomicmodules clustered into larger positively
or negatively correlated groupings (Fig. 4c). The inter-modular asso-
ciations appeared to strongly reflect association with COVID-19
severity at time of sampling (Supplementary Tables 3-4), implying
that this is a strong underlying factor in the -omics data. Consistent
with this, integrated analysis of the transcriptomic and proteomic
datasets using MEFISTO35 revealed a single factor that had a sig-
nificantly different trajectory in severe/critical versus mild/moderate
disease (p = 5.4 × 10-12, LMM TxCC) (Supplementary Fig. 11).

We characterised the modules by pathway analysis (Fig. 4a, Sup-
plementary Tables 3-4, Supplementary Data 1l, Supplementary
Data 1m). We also investigated whether disease trajectory-associated
transcriptomic modules might reflect a shift in cell-type proportions,
estimated using the CIBERSORTx algorithm (Methods) (Supplemen-
tary Fig. 12, Supplementary Data 1n). The severity-associated modules
tB and tJ were both strongly positively associated with myeloid cell
proportions, particularly neutrophils, and negatively associated with
lymphocyte subsets (Supplementary Fig. 12). The presence of a neu-
trophilic gene signature in the PBMC preparations may indicate the
presence of low-density granulocytes. Consistent with this, hub genes
in Module tB (including TECPR2, CSF3R, STX3; Fig. 4a) are associated
with granulocytes and autophagy, and pathway analysis of themodule
genes revealed enrichment for pathways including ‘Neutrophil
degranulation’ and ‘ROS andRNSproduction in phagocytes’ (including
genes encoding the key cytosolic components of the phagocyte
NADPHoxidase suchasNCF1,NCF2 andNCF4).Module tB also contains
genes encoding calcium-binding proteins (e.g., S100A6, S100A9,
S100A11, S100A12) that play important roles in regulating inflamma-
tory pathways36, as well as integrins (e.g., ITGA1, ITGAM, ITGB4, ITGAX,
ITGAD), adhesion molecules (e.g., CEACAM1, CEACAM3, CEACAM4,
ICAM3), OSM (encoding Oncostatin M) and CSF1 (encoding M-CSF).
The tL module, which also displayed a rising trajectory in worse dis-
ease, was strongly positively associated with imputed plasma cell
proportion (Supplementary Fig. 12) andmany of itsmembers encoded
immunoglobulins. The severity-associated proteomic modules that
strongly correlated with transcriptomic modules tB, tJ and tL were p8
and p9 (both enriched for pathways related to RNA splicing), and p12
(significantly enriched for the pathway ‘HDACs deacetylate histones’)
(Supplementary Table 4). The latter is consistent with our earlier
observations that a histone pathway signature was prominently asso-
ciated with COVID-19 severity in both the RNA-seq (Fig. 3c, Supple-
mentary Fig. 7) and plasma proteomic data (Supplementary Fig. 8c).

In contrast to tB, tJ, and tL, the other transcriptomic modules
(tP, tC, tF, tI, tN) all displayed a decreasing trajectory in patients
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with worse disease (Fig. 4a). These transcriptomic modules tended
to be positively associated with imputed lymphocyte subset pro-
portions and negatively associated with imputed myeloid propor-
tions, implying that higher lymphocyte-related gene signatures and
lower myeloid-related ones is a favourable prognostic sign (Sup-
plementary Fig. 12). Our findings are consistent with studies in non-
ESKD COVID-19 cohorts that show that a reduction in lymphoid cell
proportion and an increase in myeloid cell proportion are asso-
ciated with more severe disease (e.g.,8,37).

Flow cytometry identifies markers of enhanced interferon
signalling early in severe disease
To understand whether transcriptional signatures in PBMCs reflected
changes in blood cell proportions, we performed flow cytometry on a
subset of PBMC samples from the Wave 2 cohort. We found no major
difference in the overall proportions of myeloid or lymphoid cells
within the PBMC fraction between pre-infection andCOVID-19 positive
samples, except for a reduction in the proportion of type 2 dendritic
cells (Supplementary Fig. 13). Similarly, therewas little difference in the
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distribution of cells between mild/moderate and severe/critical
patients. We observed some severity-related differences within cell
subsets. Within lymphoid cells, we noted higher expression of the
activation marker CD69 on CD4+ T cells at day 7 in severe/critical
disease compared to either pre-infection or mild/moderate disease
(Supplementary Fig. 14a). At day 14, there was an increase in CD38hi

plasmablasts in severe/critical disease compared to pre-infection or
mild/moderate samples (Supplementary Fig. 14b). We also found that
in severe/critical patients, there was a progressive drop in the pro-
portion of non-classical monocytes over the first 14 days of the illness
thatwasmoremarked than inmild/moderate patients (Supplementary
Fig. 15a). This is consistent with previous studies in non-ESKD cohorts
showing an association between a decrease in non-classicalmonocytes

and more severe COVID-19 (e.g.,8,31,38,39.). In severe/critical patients
there was a greater proportion of intermediate and non-classical
monocyte subsets expressing CD38 compared both to pre-infection
samples and to mild/moderate patients (Supplementary Fig. 15b),
likely reflecting enhanced activation30. In classical monocytes there
was a similar, but non-significant, trend.We foundhigher expressionof
proliferation-associated Ki67 on classical monocytes in COVID-19
versus pre-infection samples in both mild/moderate and severe/cri-
tical patients (Supplementary Fig. 15c). In our transcriptomic data we
identified increased SIGLEC1 gene expression in COVID-19 (Fig. 2b).
SIGLEC-1 is exclusively expressed by CD14 +monocytes at the protein
level. SIGLEC-1 expressionmeasuredbyflowcytometry correlatedwith
GSVA enrichment score of type I IFN signatures (Supplementary

-0.4 -0.2 0 0.2 0.4

Ei
ge

ne
ne

a

tP

tF

tC

tN

Time from first symptoms (days)
0 5 10 15 20

Time from first symptoms (days)
0 5 10 15 20

tItL

tB tJ tF

tC

c

p12
p1p9 p8 p7

Protein modules

G
ene m

odules

tN

tP

tC

tF

tB

tI

tL

tJ

Module association

Clinical course Mild/Moderate Severe/Critical

Ei
ge

ne
ne

b

Time from first symptoms (days)
0 5 10 15 20

Time from first symptoms (days)
0 5 10 15 20

Time from first symptoms (days)
0 5 10 15 20

Time from first symptoms (days)
0 5 10 15 20

Time from first symptoms (days)
0 5 10 15 20

Time from first symptoms (days)
0 5 10 15 20

TECPR2, CSF3R, STX3, MMP25, BASP1

Neutrophil degranulation 
Innate immune system 
ROS and RNS production in phagocytes 
Oxidative stress-induced senescence 

Hub genes

Pathways

CEACAM8, BPI, CD24, CEACAM6, ABCA13

Neutrophil degranulation 
Innate immune system 
Antimicrobial peptides 
Matrisome 

SAMD3, ADGRG1, ZAP70, PYHIN1, FCRL6

Natural killer cell mediated cytotoxicity 
Immunoregulatory interactions between a 
  lymphoid and a non-lymphoid cell 
CD8 TCR downstream pathway 

PLCG1, LCK, UBASH3A, ABCD2, LINC00649

T-cell receptor and co-stimulatory 
  signaling

RRM2, FOXM1, MKI67, TPX2, BUB1

Cell cycle 
MHC class II antigen presentation 
DNA damage response

SNRPA1, CEP95, THUMPD2, CENPC, ZNF326 PLXNB2, NAAA, CSF1R, PSAP, CARD9

PD1 signaling  
Viral myocarditis 
Antigen processing and presentation 
Cell adhesion molecules

HDC, LINC02458, CPA3, GATA2, AKAP12

IL-3 signaling pathway 
Asthma  

G
en

e 
ex

pr
es

si
on

 
(lo

gC
PM

)

MMP9

LRRN1

G
en

e 
ex

pr
es

si
on

 
(lo

gC
PM

)
G

en
e 

ex
pr

es
si

on
 

(lo
gC

PM
)

Time from first symptoms (days) Time from first symptoms (days) Time from first symptoms (days)

Clinical course Mild/Moderate Severe/Critical

95% confidence intervals Raw transcriptomic profiles

Granulocyte cell-like module 1 Granulocyte cell-like module 2 T-cell activity module 1 T-cell activity module 2

Allergy-related moduleMonocyte moduleNuclear and cell cycle module

Plasma cell module

None significant

Hub genes

Pathways

ORM1

0 5 10 15 20 0 5 10 15 200 5 10 15 20

8

6

4

2

10

5

4

2

0

-2

6
4
2
0

-2

L3
2
1
0

-1
-2

5

0

Fig. 4 | Longitudinal profiles of transcriptomic modules. a The longitudinal
profiles of significant (TxCC, LMM, FDR<0.05) gene modules, stratified by clinical
course. Lines represent estimatedmarginalmeans and shaded areas represent their
95%confidence intervals.bModelled longitudinal profiles of the three geneswithin
module B with the most significant TxCC interaction effects (LMM). Left: lines

represent estimated marginal means and shaded areas represent their 95% con-
fidence intervals. Right: individual-level data (n = 169 samples from 40 individuals).
c Heatmap displaying associations (LMM) between transcriptomic and proteomic
modules (right). Red=positive correlation, blue=negative correlation. Significant
associations (5% FDR) are represented by an asterisk.

Article https://doi.org/10.1038/s41467-022-35454-4

Nature Communications |         (2022) 13:7775 7



Fig. 15d). We observed SIGLEC1 expression increased at greater
intensity as early as day 0-3 post infection in severe/critical versus
mild/moderate patients, suggesting stronger and a more immediate
type I IFN response in severe COVID-19 (Supplementary Fig. 15e).

Longitudinal cytokine/chemokine analysis reveals distinct
temporal profiles that distinguish disease severity
Manyplasmaproteins associatedwith severe COVID-19 are canonically
intra-cellular proteins. Their elevation in severe COVID-19 may there-
fore be a readout of increased cell turnover, death, stress, and viral
hijacking of host cellular machinery. Consequently, we performed a
more focussed analysis examining proteins whose primary biological
role is to act extra-cellularly (e.g., cytokines, chemokines, growth fac-
tors and their receptors). These classes of proteins are important
therapeutic targets in inflammatory diseases40. Accordingly, we mod-
elled the temporal profiles of 232 proteins that fell within the KEGG
pathway ‘Cytokine-cytokine receptor interaction’. Fifty proteins had
significantly different profiles in patients with a severe/critical clinical
course versus thosewithmild/moderate ones (TxCC interaction effect,
5% FDR; Supplementary Data 1o). Proteins exhibited distinct patterns
of divergence between severe/critical andmild/moderate disease over
time (Fig. 5a). Some (e.g., IL1β, IL6, IL15RA, CCL2) showed a relatively
stable temporal profile in mild/moderate patients but rising trajec-
tories in severe/critical patients (Fig. 5b). Others (e.g., CCL15,
TNFSF13B (BAFF), PDGFRB, EDAR, IFNA10, IFNA13, IFNA16, IFNE, and
IFNL3) were elevated early in the disease course and decreased over
time, but displayed more marked initial elevations in severe/critical
patients (Fig. 5c). Yet other proteins displayed temporal profiles in
mild/moderate patients that were inverted compared to severe/cri-
tical. For example, CD40LG, TNFSF10 (TRAIL) and IL11 were reduced in
the severe/critical versus themild/moderate group at early timepoints
but increased in severe/critical patients later (Fig. 5d). Conversely,
leptin, INHBA (inhibin A), and CCL22 were initially higher in severe/
critical than mild/moderate patients but with the reverse pattern later
on (Fig. 5e). These data illustrate the dynamic nature of the soluble
protein response and how this varies according to disease severity,
highlighting the limitation of studies that use a single snapshot.
Comparison of our data to another study utilising longitudinal pro-
teomic profiling (Filbin et al.12) in COVID-19 in a more general patient
population revealed similar findings (Supplementary Material), sug-
gesting that the effects weobserved are generally not specific to ESKD.
One exception was EPOR (erythropoietin receptor). In our ESKD
patient data, this exhibited a significantly different temporal profile in
severe/critical versusmild/moderate disease (p = 1.7 × 10-8, LMMtimex
disease course interaction). In contrast, the temporal profile was not
significantly different among differing disease severity strata in the
data of Filbin et al. (p =0.47, LMM) (Supplementary Material, Supple-
mentary Fig. 16). Erythropoietin (EPO) is a hormone produced by the
kidney that promotes red cell formation. In ESKD there is loss of EPO
production by the kidney, and consequently patients require exo-
genous administration of recombinant EPO. The contrasting EPOR
longitudinal profiles between severe and mild patients in our cohort
are likely to reflect the changes in erythropoietin responsiveness that
accompany critical illness and sepsis in ESKD patients.

Do immune cell transcriptomic and plasma proteomic
signatures of COVID-19 differ between ESKD patients and
non ESKD patients?
We next sought to investigate whether the plasma proteomic and
PBMC transcriptomic signatures that we observed in our data were
specific to ESKD patients, or were like those identified in other non-
ESKD patient cohorts. To this end, we compared our RNA-seq results
to the COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium
study7. We re-analysed their RNA-seq data so that the analytical
approach was as similar as possible to that used in the present study

(see Supplementary Material). For the differential gene expression
analysis between COVID-19 positive and negative samples, we found a
high degree of concordance between our study and the COMBAT
study (Pearson r 0.7 for comparison of estimated effect sizes; Sup-
plementary Fig. 17), despite the use of whole blood in the COMBAT
study versus PBMC in our study. We observed similar consistency in
the pathway-level GSVA analysis (Supplementary Fig. 17). Our results
for the association of gene expression with COVID-19 severity were
also generally consistent with the COMBAT study (r 0.6 for gene-level
analysis; Supplementary Fig. 18; see Supplementary Material for more
detail). These findings suggest that similar immune cell transcriptomic
patterns occur in COVID-19, irrespective of whether the patient
has ESKD or not.

We then compared our plasma proteomic data to those of Filbin
et al.12, which also used the SomaScan proteomic platform and col-
lected samples at multiple timepoints during acute COVID-19. While
there was still some correlation of effect estimates, this was generally
lower than with the cross-study transcriptomic comparisons (Supple-
mentaryMaterial; Supplementary Figs. 19 and 20). This may indicate a
greater impact of ESKD on the circulating proteome in COVID-19 than
the immune cell transcriptome, although we cannot exclude the pos-
sibility that technical factors account for the differences.

In summary, these comparisons reveal that our results are gen-
erally similar to those identified in cohorts of COVID-19 patients
without ESKD, albeit less so for plasma proteomics than for RNA-seq.
Despite the lack of clear systematic differences in the -omic signatures
in ESKD patients and other cohorts, manual review of our significant
results did reveal specific instances of some biologically plausible
examples of ESKD-specific effects, such as the example of EPOR
described above.

Plasma LRRC15 as a marker of COVID-19 severity
We next investigated whether clinical severity could be inferred from
the transcriptomic and/or proteomic data and which had the better
predictive performance. For each COVID-19 patient, we selected the
first sample at the patient’s peak severity score so that there was one
sample per patient. To predict COVID-19 severity at time of sampling,
we employed two supervised learning methods, lasso and random
forests. We applied these separately on (i) the plasma proteomic data;
(ii) the PBMC transcriptomic data; and (iii) the combination of both
(the multi-omic data). For this analysis, we combined the COVID-19
cases from both cohorts. Area under the curve (AUC) was estimated
using Monte Carlo cross-validation (Methods). As an additional ana-
lysis, we trainedmodels on theWave 1 cohort and tested on theWave 2
cohort (Supplementary Material).

The proteomic-basedmodels outperformed the transcriptome-
based ones, with non-overlapping 95% confidence intervals (Fig. 6a,
Supplementary Fig. 21a). The lasso model generated on the pro-
teome had an estimated AUC of 0.93 (versus 0.86 for the tran-
scriptome). The random forests model generated on the proteome
had an AUC of 0.88 (versus 0.83 for the transcriptome). The models
based on the proteome alone also had greater predictive perfor-
mance than those trained on the multi-omic data, although the
confidence intervals for the AUC estimates overlapped (Fig. 6a,
Supplementary Fig. 21a).

We next examined the supervised learning models to identify the
most important biomarkers of severe/critical disease (Methods)
(Fig. 6b, Supplementary Fig. 21b, Supplementary Data 1p-r). Although
only a minority of the input features to the multi-omic model were
proteins (34%; 6323/18,548), proteins made up the majority of the top
15 most important predictors (10/15 for lasso and 9/15 for random
forests). This, and our finding that the plasmaproteomewas a superior
classifier of severity than the PBMC transcriptome, highlights that
plasma proteins provide a valuable read-out of the pathophysiological
processes in severe COVID-19.
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Fig. 5 | Dynamic temporal changes in circulating cytokines and receptors vary
between severe and mild COVID-19. a Heatmap displaying proteins with a sig-
nificantly different temporal profile in mild vs severe disease (TxCC, LMM,
FDR <0.05). Colour indicates LMM estimated marginal means over time, stratified
by patient group (n = 169 samples from 40 individuals). Proteins are clustered
based on the temporal profile of the discordance between mild/moderate and

severe/critical disease. Proteins are annotated using gene symbols, with alternative
commonprotein identifiers in parentheses.b–e Examples of proteinswith differing
patterns of discordance over time in severe/critical versus mild/moderate patients
(TxCC, LMM, FDR<0.05). Lines represent estimated marginal means and shaded
areas represent their 95% confidence intervals. The raw proteomic profiles display
protein abundance for each individual (n = 169 samples from 40 individuals).
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Both lasso and random forests identified plasma LRRC15 protein
levels as the most important biomarker of COVID-19 severity. Interest-
ingly, this protein was recently identified by three pre-prints as a
receptor for SARS-COV-241–43. We next examined LRRC15’s longitudinal
trajectory over the course of COVID-19 infection, finding that it dis-
played a different temporal profile dependent on the disease course
(p =6.5 × 10-8, TxCC interaction, LMM). The concentration was stable in
most individuals with mild/moderate COVID-19 (Fig. 6c), whereas it
decreased over time in severe/critical patients. Thus, a snapshot level of
LRRC15 and its dynamicprofile over timecanconvey informationon the
current clinical state of the patient and the overall course of the disease,
respectively. Of note, data mining of external studies revealed similar
findings in two other studies12,19 that measured LRRC15 in non-ESKD
COVID-19 patients (Supplementary Material, Supplementary Fig. 22).

Persistent deranged platelet and coagulation pathways in
convalescence
For 12 of the 17 patients in the Wave 2 cohort, we obtained a sample
after clinical recovery at approximately two months following the

acute infection. PCA analysis of the PBMC transcriptome showed that
while pre-COVID-19 and convalescent samples appeared more similar
than samples taken during COVID-19, there were differences between
the convalescent samples and their pre-infection counterparts
(Fig. 7a), indicating that they have not fully returned to baseline.
Comparison of the convalescent samples to their paired pre-COVID-19
samples revealed 25 significantly differentially expressed genes (1%
FDR), of which 24 were up-regulated post-COVID-19 (Fig. 7b, Table 1,
Supplementary Data 1s). Up-regulated clotting-related genes included
PF4 (encoding platelet factor 4) and the related gene PF4V1 (platelet
factor 4 variant 1). Of note, these genes are located in the same
genomic region on chromosome 4, along with the chemokine CXCL5,
which was also significantly up-regulated. Another nearby gene, PPBP
(encoding Pro-Platelet Basic Protein, also known as CXCL7), was also
up-regulated in convalescent samples, although it did not quite
reach significance at 1% FDR (nominal P = 3.3 × 10-5, Benjamini-
Hochberg adjusted P = 0.016). The upregulation of these neighbouring
genes suggests they are influenced by a shared genomic regulatory
element. Overrepresentation analysis of the 25 differentially expressed
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genes revealed significant enrichment of terms including ‘Platelet
activation, signalling and aggregation’, ‘Formation of fibrin clot/clot-
ting cascade’, ‘Chemokine signalling pathway’, ‘SARS-CoV-2 innate
immunity evasion and cell-specific immune response’ and ‘Smooth
muscle contraction’ (Fig. 7c, Supplementary Data 1t). These data sug-
gest persistent activation of abnormal processes for a considerable
time after clinical recovery. In particular, they implicate the vascular
and clotting systems, which may have implications for long-term risk
of thrombosis.

Discussion
Here we performed serial blood sampling and longitudinal multi-omic
analysis of ESKD haemodialysis patients with COVID-19, enabling
insight into the pathogenesis of COVID-19 through examination of the
temporal evolution of molecular and cellular changes. ESKD patients
are an important group to study as they are at elevated risk of severeor
fatal disease25,44. Despite the remarkable success of vaccination pro-
grammes at the population level, ESKD patients display impaired
vaccine responses27,28. In addition, themajority of patients in our study

were of non-white ethnicity, which is also a risk factor for severe
disease25.

Most studies of circulating proteins in COVID-19, including our
previous work, have used Olink immunoassay technology12–14 or mass
spectrometry15,16. The broadestOlink assay system, used in the studyof
Filbin et al.12, measures 1472 proteins, while mass spectrometry is
generally limited to reliable detection of fewer than 1000 plasma
proteins and lacks sensitivity for low abundance proteins. A small
number of studies have employed the aptamer-based SomaScan v4
platform, thatmeasures 4665 unique proteins12,17–20. Here, we used the
SomaScan v4.1, which measures 6323 unique proteins, and com-
plemented this with RNA-seq and flow cytometry. Our study is
strengthened by data from two cohorts from different waves of the
pandemic, and the comparison of samples from before, during and
after COVID-19 from the same individuals.

Plasma proteomics identified several pathways upregulated in
COVID-19 related to host defence against viruses, including those
previously described in SARS-CoV-2. Our PBMC transcriptomic analy-
sis identified numerous pathways that are up-regulated in COVID-19.
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Many have been identified in previous studies of COVID-19 in other
populations without ESKD, indicating the presence of common pat-
terns of COVID-19-related immunological abnormalities. Examples
include type 1 interferon signalling, the complement cascade, and
genes reflecting leukocyte-vascular interactions. Other up-regulated
pathways included ‘Polo-like kinase mediated events’ and ‘Golgi-cis-
ternae peri-centriolar stack re-organisation’. Both are likely to reflect
the extensive cell division of immunocytes that occurs in COVID-19.
For instance, the pericentriolar stacks of Golgi cisternae undergo
extensive fragmentation and reorganization inmitosis. Similarly, polo-
like kinase is crucial for facilitating the G2/M transition. These findings
are consistent with the up-regulation of APC-Cdc20 mediated degra-
dation of Nek2A and other APC-Cdc20 related processes that we
observed in the proteomic data; Cdc20 is a protein that is key to the
process of cell division.

Transcriptomic and proteomic associations with severe COVID-19
converged on some unifying themes, including enrichment of path-
ways related to histones, interferon response, granulopoiesis, clotting,
TCR activation and cell cycle processes. For example, up-regulation of
histone-encoding genes and elevated plasma histone protein levels
were both markers of COVID-19 severity. The increased expression of
histone-encoding transcripts may indicate increased immune cell
proliferation. In each cell cycle, sufficient histones are needed to
package the newly replicated daughter DNA strands, requiring tight
coupling of histone synthesis to the cell cycle45. Excess histones within
cells can trigger chromatin aggregation and block transcription46.
Thus, in severe COVID-19, viral hijacking of cellular machinery may
contribute to cellular damage through decoupling of DNA synthesis
and histone transcription. The preponderance of plasma histone
proteins in severe disease is likely to reflect the higher levels of cell

damage and death. The presence of histone proteins in plasma, how-
ever, may represent more than just a marker of disease. Histones are
constituents of neutrophil extracellular traps (NETs) which contribute
to tissue injury in severe COVID-19. In addition, histones constitute
powerful damage associated molecular patterns (DAMPs) and can
perpetuate inflammation via ligation of toll-like receptors and direct
damage to epithelial and endothelial cells47. Upregulation of pathways
related to control of transcription and translation was another feature
of severe COVID-19 (Supplementary Fig. 8b), perhaps reflecting sub-
version of normal cell biology by SARS-CoV-2. In keeping with this,
studies of cells infected with SARS-CoV-2 revealed alteration of pro-
cesses including translation, splicing and nucleic acid metabolism48,49.

Modular analysis highlighted a rising neutrophilic gene signature
as the illness progressed in severe/critical patients, with enrichment of
reactive oxygen and nitrogen species pathways. This suggests pro-
longed activation of neutrophils and their key effector pathways
including NET formation. This neutrophilic gene signature likely indi-
cates the presence of low-density granulocytes within the PBMC frac-
tion. Data from other infections suggest that phagocyte NADPH
oxidase-derived reactive oxygen species can be detrimental in acute
viral infection; mice lacking components of the NADPH oxidase have
reduced disease severity and inflammation in response to influenza
and lymphocytic choriomeningitis virus infection50–52.

Cytokines and their receptors play a major role in the pathogen-
esis of inflammatory diseases and are important targets of existing
drugs40. Longitudinal examination of plasma cytokines/chemokines
revealed divergence temporal trajectories between disease severity
strata, manifesting in several patterns (Fig. 5). For example, in patients
with a severe/critical disease course, IL11 was reduced early on but
increased later relative tomore indolent disease (Fig. 5d). IL11 is known

Table 1 | Genes that do not return to baseline 2 months after recovery from COVID-19

Gene ID Gene name Estimate (recovery - pre-infection) P-value BH-adjusted P-value

ENSG00000236304 lncRNA 1.84 5.37E-08 9.20E-04

FSTL1 Follistatin Like 1 1.17 1.60E-07 1.37E-03

PTGS1 Prostaglandin-Endoperoxide Synthase 1 0.64 3.69E-07 2.11E-03

SPOCD1 SPOC Domain Containing 1 1.31 6.41E-07 2.53E-03

CXCL5 C-X-C Motif Chemokine Ligand 5 1.84 7.39E-07 2.53E-03

ALOX12 Arachidonate 12-Lipoxygenase, 12 S Type 1.33 1.24E-06 3.53E-03

PF4 Platelet Factor 4 1.53 1.71E-06 3.91E-03

ESAM Endothelial Cell Adhesion Molecule 1.18 1.83E-06 3.91E-03

MT-RNR1 Mitochondrially Encoded 12 S RRNA 1.00 2.61E-06 4.13E-03

MMD Monocyte To Macrophage Differentiation Associated 0.77 2.80E-06 4.13E-03

ENSG00000240093 lncRNA -0.71 2.82E-06 4.13E-03

MTURN Maturin, Neural Progenitor Differentiation Regulator
Homolog

0.54 3.11E-06 4.13E-03

GNG11 G Protein Subunit Gamma 11 1.53 3.13E-06 4.13E-03

CAVIN2 Caveolae Associated Protein 2 1.15 4.51E-06 5.52E-03

DOK6 Docking Protein 6 1.59 5.00E-06 5.71E-03

LINC00989 lncRNA 1.25 5.76E-06 5.81E-03

SPARC Secreted Protein Acidic And Cysteine Rich 1.65 6.07E-06 5.81E-03

PF4V1 Platelet Factor 4 Variant 1 1.60 6.11E-06 5.81E-03

ABLIM3 Actin Binding LIM Protein Family Member 3 1.41 6.88E-06 6.07E-03

MFAP3L Microfibril Associated Protein 3 Like 0.74 7.09E-06 6.07E-03

CALD1 Caldesmon 1 1.78 7.79E-06 6.23E-03

ITGB5 Integrin Subunit Beta 5 1.10 8.00E-06 6.23E-03

LINC01750 lncRNA 2.00 1.13E-05 8.22E-03

PCSK6 Proprotein Convertase Subtilisin/Kexin Type 6 1.22 1.15E-05 8.22E-03

PVALB Parvalbumin 2.04 1.46E-05 9.97E-03

Genes that are significantly differentially expressed (1%FDR, LMM) in recovery versuspre-infection samples (n = 24 samples from12patients). Estimate represents theestimateddifference in logCPM
(counts per million). BH=Benjamini-Hochberg. A complete table including all genes tested can be found in Supplementary Data 1s.
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to cause progressive fibrosis53,54, and the marked increases late in
severe/critical disease may have implications for the development of
pulmonary sequelae. Leptin, INHBA (inhibinA), andCCL22 showed the
opposite pattern (Fig. 5e). Leptin has roles in both cellmetabolism and
immunitywithmany immune cells responding to leptin directly via the
leptin receptor, resulting in a pro-inflammatory phenotype55. It is
produced by adipocytes, so its elevation early in severe/critical disease
may be a read-out of higher body mass index, which is a risk factor for
severe COVID-19, or increased cell metabolism/turnover. Its fall over
time in severe/critical patients may reflect weight loss and cell death.
Whether leptin is also directly influencing risk of severe disease
through its immunological effects is unclear. Inhibin-A progressively
increasedover time inmild/moderate patients but fell in severe/critical
patients. Inhibin-A negatively regulates dendritic cell maturation and
promotes a tolerogenic phenotype56. Failure to upregulate it later in
the disease course may therefore contribute to deleterious inflam-
mation. Similarly, CCL22 plays an important role in switching off
inflammation. CCL22 promotes dendritic cell-regulatory T cell inter-
actions and CCL22 deficiency is associated with excessive pathogenic
inflammation in mice57.

Proteins in the type 1 interferon (IFN) pathway were higher in
severe/critical than mild/moderate patients early in disease (Fig. 5c),
suggesting a paradoxical role of this pathway in COVID-19. While
inherited or acquired deficiencies of IFN proteins predispose to risk of
severe COVID-1958,59, our data suggest that the picture may be more
complex. Thus, IFNs may act as a double-edged sword, with harm to
the host from both insufficient responses (leading to failure to control
the virus) and from excessive responses (resulting in immunopathol-
ogy). While we cannot exclude the possibility that increased IFNs is a
consequence rather than a cause of severe disease, their elevation very
early in disease suggests this is less likely. Another consideration is that
the greater IFN response in severe disease might reflect higher viral
burden.

Using twodistinct supervised learningmethods,we observed that
the plasma proteome better captures disease severity than the PBMC
transcriptome. When supervised learning algorithms were trained on
both the proteomic and transcriptomic data simultaneously, plasma
proteins dominate the list of important biomarkers. There are several
reasons why this might be the case. Plasma is under strong homo-
eostasis: derangement is a marker of loss of physiological control.
Plasma proteins may provide important read-outs of both pathogen-
esis and tissue injury by reflecting the activity of cell types other than
PBMCs, such as neutrophils, endothelium and hepatocytes (a major
source of coagulation and complement proteins). In apparent contrast
to our findings, a study by Lee et al.9 involving immune cell tran-
scriptomics and plasma metabolomics using mass spectrometry (MS)
reported that the combination of transcriptome and metabolome
provided superior classification of severity. However, it is likely that
the difference between the study of Lee et al. and our findings relate to
whatwasmeasured (i.e.,MS-basedmetabolomics versusmeasurement
of 6,323 proteins).

Our integrated multi-omics analysis with MEFISTO revealed a
single factor that had a significantly different trajectory in severe/cri-
tical versus mild/moderate disease (Supplementary Fig. 11a). This
parallels the findings of Su et al.8. While the specific methods used
differ, both our MEFISTO analysis and the integrative network analysis
by Su et al. identified a single factor in the data that was highly related
to COVID-19 severity and pro-inflammatory cytokines.

Comparison to other transcriptomic and plasma proteomic stu-
dies in non-ESKDpatients revealed broadly similar findings. Such inter-
study comparisons have inherent limitations as it is not possible to
distinguish whether study-specific findings are biological or are due to
differences in study design, statistical power, assay platforms and
other sources of non-biological variation. With these caveats in mind,
our transcriptomic findings were remarkably similar to those of the

COMBAT study7 (despite PBMC being measured in our study versus
whole blood in their study). There was lower concordance of our
plasma proteomic results to those of Filbin et al.12 than for the tran-
scriptomic comparison. This could reflect differences in study design
(unlike our controls, those of Filbin et al. presented with acute
respiratory distress) or technical differences (the study by Filbin et al.
used an earlier version of the SomaScan platform) but could also be
biological as it is known that circulating proteins are affected by renal
impairment60–63.

One finding that may be specific to ESKD is the dynamic temporal
profile of the erythropoietin receptor (EPOR) in severe/critical COVID-
19 versus a more stable profile in mild/moderate disease. This is likely
to reflect the changes in erythropoietin responsiveness that accom-
pany critical illness and sepsis in ESKD patients. Cytokines affect the
EPO- mediated signalling pathway64 and inhibit the expression and
regulation of specific transcription factors involved in the control of
erythrocyte differentiation. For instance, high concentrations of TNF-α
or IFN-gammacause the need for higher amounts of EPO to restore the
formation of erythrocyte colony forming units65. In haemodialysis
patients, inflammation decreases the response to erythropoiesis sti-
mulating agents, changing iron regulation through hepcidin upregu-
lation and facilitating haemolysis66. This EPO-hyporesponsiveness
(assessed in terms of haemoglobin) in the setting of acute inflamma-
tion has been empirically demonstrated in a large multi-national
study67. Furthermore, patients with ESKD rely on regular exogenous
administration of erythropoiesis-stimulating agents and this can be
disruptedwhen patients are admitted to hospital. Dysregulation of the
erythropoietin pathway in severe COVID-19 in ESKD patients may also
be relevant to immune function since erythropoietin is known to effect
both innate and adaptive immunity68.

A notable findingwas the identificationof plasma levels of LRRC15
as a marker of COVID-19 severity (Fig. 6b). Longitudinal profiling
revealed that LRRC15 levels remain stable in those with a mild/mod-
erate clinical course but decrease over time in severe/critical illness
(Fig. 6c). Data mining of previous studies revealed similar findings in
two non-ESKD cohorts12,19. Three recent pre-prints using a variety of
cell lines and approaches have identified LRRC15 as a SARS-CoV-2 co-
receptor41–43. Using arrayed transmembrane protein and pooled
genome-wide CRISPR activation screens, Shilts and colleagues
demonstrated that the SARS-CoV-2 spike protein interacts with
LRRC1541. Both screens identified the interaction and the CRISPRa
screen identified LRRC15 and the established SARS-CoV-2 binding
partner, ACE2, as the two most prominent interactors. This work also
showed thatACE2 and LRRC15 bind theC-terminal domainof the spike
protein, which contains the receptor binding domain, suggesting that
the two proteins may compete for spike protein binding. Loo et al.43

performed a CRISPRa screen on HEK293T cells, also identifying
LRRC15 and ACE2 as the highest confidence SARS-Cov2 receptors.
They propose that LRRC15 plays an actively inhibitory role, binding
SARS-CoV-2 but not allowing entry to the cell. They further hypothe-
sise that it does so in trans through its high expression on fibroblasts
rather than alveolar cells. Song and colleagues42 also used a CRISPRa
approach to identify proteins that could bind the SARS-CoV-2 spike
protein to the A375melanoma cell line. The screen identifiedACE2 and
LRRC15, and further showed that the interaction took place with the
receptor bindingdomain of the spike protein. Expressionof LRRC15 on
a HeLa cell line that expresses ACE2 inhibited the entry of a SARS-CoV-
2 spike pseudovirus. This paper also notes that LRRC15 is expressed on
different cells from those that express ACE2 and proposes that LRRC15
inhibits virally entry in trans, acting as a decoy and binding virions that
cannot then enter cells via ACE2. Our data provide in vivo human
evidence to suggest LRRC15 may be important in the host response to
SARS-CoV-2, and are consistent with a model in which a failure to up-
regulate LRRC15 increases risk of severe COVID-19 disease because of
the lack of a receptor that inhibits its entry to cells.
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A strength of our study was the availability of baseline pre-
infection samples for the Wave 2 cohort, as well as samples taken two
months after the acute COVID-19 episode. Leveraging this, we
demonstrate that there is chronic activationof gene expression related
to vascular, platelet and coagulation pathways for a prolonged period
after clinical resolution of disease. The elevated risk of thrombotic
events during acute COVID-19 is well-documented. In a large study
encompassing both hospitalised and non-hospitalised patients69, the
risk of pulmonary embolism (PE) anddeep vein thrombosis (DVT)were
27-fold and 17-fold increased, respectively, in the seven days following
diagnosis. These risk ratios are much higher than those previously
associated with upper respiratory tract infections, suggesting unique
features specific to SARS-CoV-2 infection. The risk of arterial throm-
bosis was also significantly increased, although smaller in magnitude
than the risk of venous thromboembolism (VTE). The pathophysiology
underlyingCOVID-19 associated coagulopathy is complex and involves
the convergence of several pathways70. Invasion of ACE2-expressing
epithelial cells by SARS-CoV-2 results in down-regulation of ACE2 and
increased angiotensin II levels. This in turn leads to increased expres-
sion of PAI1 which impairs breakdown of fibrin and promotes
increased vascular tone, via smooth muscle contraction. Endothelial
cell activation, complement activation, NETosis, hypoxia and cytokine/
chemokine secretion all promote coagulopathy through increases in
tissue factor and concomitant fibrin formation. Our data suggest that
these pathways remain dysregulated months after acute infection has
resolved (Fig. 7, Table 1). This is important given emerging evidence
indicating that the risk of thrombo-embolism extends beyond the
acute phase. Ho et al. showed that risk of a PE was 3.5-fold higher even
in the time window 28 to 56 days after diagnosis of COVID-1969. A
recent population-wide registry study revealed that following COVID-
19 the risk of DVT and PEwas significantly elevated for 70 and 110 days,
respectively71. Although VTE risk was greatest for those with severe
disease, even patients with mild disease had elevated VTE risk. Our
data provide a molecular basis that begins to explain this risk. Among
the genes up-regulated in convalescent samples compared to pre-
infection was platelet factor 4 (PF4). PF4 is expressed in platelets and
leucocytes. It is released from the alpha granules of activated platelets,
contributing to platelet aggregation. The prolonged up-regulation of
PF4 after COVID-19 is therefore likely to contribute to a prothrombotic
state. Of note, autoantibodies to PF4 are the pathogenic entity in both
vaccine-induced thrombotic thrombocytopenia (VITT)72,73 and
heparin-induced thrombocytopenia (HIT). PF4 becomes an autoanti-
gen when it forms complexes with adenoviral vaccine components or
heparin respectively, unmasking epitopes to which autoantibodies
bind74. It will therefore be interesting for future studies to investigate
whether autoantibodies to PF4 might contribute to post-COVID-19
thrombosis in some patients. Whether the molecular abnormalities
found in our study also apply to more general patient populations
without background ESKD needs to be determined. Ongoing studies
focusing on the sequelae of COVID-19 are well placed to address this.

Our study has several limitations. It was a single centre study and
so lacked a truly independent external validation cohort. ESKD
patients have considerable multi-morbidity and deranged physiology,
and our findings may not all be generalisable to other patient popu-
lations. We lacked a comparator group of ESKD patients with another
viral infection to delineate COVID-19 specific features. We studied
peripheral blood; while this can provide valuable information, it does
not always reflect processes at the site of tissue injury. We performed
bulk RNA-seq on PBMCs. Thus, transcriptomic signatures may reflect
both changes in gene expression and also alteration in the distribution
of cell types within PBMCs. We mitigated this issue through use of
deconvolution methods and flow cytometry, but future studies using
single cell RNA-seq and CITE-seq will provide further granularity. We
did not have measurements of viral load which would have aided
interpretation of the magnitude of host responses (e.g., interferon

signalling). Finally, the convalescent samples were taken relatively
soon after clinical recovery: it will be important for future studies to
establish how long molecular abnormalities persist.

In summary, we demonstrate dynamic transcriptomic, proteomic
and cellular signatures that vary both with time and COVID-19 severity.
We show that inpatientswith a severe clinical course there is increased
type 1 interferon signalling early in the illness, with increases in pro-
inflammatory cytokines later in disease. We identify plasma levels of
the proposed alternative SARS-CoV-2 receptor, LRRC15, as a marker of
COVID-19 severity. Finally, we show that immune cells display dysre-
gulated gene expression two months following COVID-19, with upre-
gulation of clotting-related genes. This may contribute to the
prolonged thrombotic risk post-COVID-19.

Methods
Patient cohorts and ethical approval
All participants were recruited from the Imperial College Renal and
Transplant Centre and its satellite dialysis units, London, United
Kingdom, and provided written informed consent prior to participa-
tion. Study ethics were reviewed by the UK National Health Service
(NHS) Health Research Authority (HRA) and Health and Care Research
Wales (HCRW) Research Ethics Committee (reference 20/WA/0123:
The impact of COVID-19 on patients with renal disease and immuno-
suppressed patients). Ethical approval was given. Study volunteers
provided informed consent and did not receive financial or other
compensation for participating in the study.

We recruited two cohorts of ESKD patients with COVID-19
(Fig. 1a). All patients were receiving haemodialysis prior to acquiring
COVID-19. The first cohort (Wave 1) were recruited during the initial
phase of the COVID-19 pandemic (April–May 2020). Blood samples
were taken from 53 patients with COVID-19 (Supplementary Table 1).
Serial blood samplingwas carried outwhere feasible (Fig. 1b), given the
pressure on hospital services and the effects of national lockdown. We
also contemporaneously recruited 59 non-infected haemodialysis
patients to provide a control group, selected tomirror the age, sex and
ethnicity distribution of the COVID-19 cases (Supplementary Fig. 1a–c).

The Wave 2 cohort consisted of 17 ESKD patients with COVID-19
infected during the resurgence of cases in January–March 2021 (Sup-
plementary Table 2). These 17 individuals had all been recruited as part
of the COVID-19 negative control group during Wave 1, and so a pre-
infection sample collected in April/May 2020 (8–9 months preceding
infection) was also available. For the Wave 2 cohort, we systematically
acquired serial samples for all patients at regular intervals (every
2–3 days over the course of the acute illness) (Fig. 1c). Additionally, for
12 of these 17 patients, we acquired convalescent samples at approxi-
mately 2 months post the acute COVID-19 episode (range 41-55 days
from the initial sample). Convalescent samples were unavailable for
four patients who died and for one patient due to logistical difficulties
in sample collection.

To minimise variation related to the timing of dialysis, blood
samples were taken prior to commencing a haemodialysis session.

Clinical severity scoring
We assessed disease severity using a four-level ordinal score, cate-
gorising into mild, moderate, severe, and critical, based on the WHO
clinicalmanagement of COVID-19: Interim guidance 27May 2020.Mild
wasdefined asCOVID-19 symptomsbut no evidenceof pneumonia and
no hypoxia. Moderate was defined as symptoms of pneumonia or
hypoxia with oxygen saturation (SaO2) greater than 92% on air, or an
oxygen requirement no greater than 4 L/min. Severe was defined as
SaO2 less than92% on air, or respiratory ratemore than 30 perminute,
or oxygen requirement more than 4 L/min. Critical was defined as
organ dysfunction or shock or need for high dependency or intensive
care support (i.e., the need for non-invasive ventilation or intubation).
We recorded disease severity scores throughout the illness, such that
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samples from the same individual could have differing severity scores
according to the temporal evolution of the disease. We defined the
overall clinical course for each patient as the peak severity score that
occurred during the patient’s illness. Different downstream analyses
utilise either the severity at the time of sample (i.e., the sample-level
severity) or theoverall clinical course (i.e., thepatient-level severity), as
described in the relevant sections below.

PBMC collection protocol
Peripheral bloodmononuclear cells (PBMCs) were obtained by density
gradient centrifugation using Lymphoprep (STEMCELL Technologies,
Canada). Approximately 20ml of blood were diluted 1× with phos-
phate buffered saline (PBS) with addition of 2% FBS and layered on top
of 15ml of Lymphoprep solution. The samples were then centrifuged
at 800g for 20min at room temperature without break. PBMCs were
collected from the interface andwashed twicewith PBS/2%FBS. In total
2 million PBMCs were centrifuged down to form a pellet and resus-
pended in 350 µl RLT buffer + 1% β-Mercaptoethanol (from Qiagen
RNAeasy kit) for RNA extraction. Remaining PBMCs were cryopre-
served in 1ml freezing medium (FBS 10% DMSO) and stored in –80 °C
freezer.

Plasma collection
5ml of blood was collected in EDTA tubes and centrifuged at 1000× g
for 15min. Plasma was extracted and frozen at –80 °C.

RNA-seq of PBMCs
RNA extraction and sequencing were done at GENEWIZ facilities
(Leipzig, Germany). Total RNA was extracted from using RNeasy Mini
kits (Qiagen) as per themanufacturer’s instructions, with an additional
purification step by on-column DNase treatment using the RNase-free
DNaseKit (Qiagen) to remove any genomicDNA.Total RNAquality and
concentration was analysed using Agilent Tapestation (Agilent Tech
Inc.). Sampleswith RIN values ≥6.0 and≥100 ngof total RNAwereused
to generate RNA-seq libraries. RNA-seq libraries were made using
NEBnext ultra II RNAdirectional kit per themanufacturer’s instruction.
Poly-A RNA was purified using poly-T oligo-attached magnetic beads
followed by haemoglobin mRNA depletion using QIAseq FastSelect
GlobinKit to removepotential contaminatingRNA fromred blood cell.
Then, first and second cDNA strand synthesis was performed. Next,
cDNA 3′ endswere adenylated and adapters ligated followed by library
amplification. The libraries were size selected using AMPure XP Beads
(Beckman Coulter), purified and their quality was checked using a
short sequencing run on MiSeq Nano. Samples were randomized to
avoid confounding of batch effectswith clinical status andmultiplexed
libraries were run on 29 lanes of the Illumina HiSeq platform to gen-
erate approximately 30 million x 150bp paired-end reads per sample.

Initial quality control and alignment was performed using the nf-
core RNA-seq v3.2 pipeline75 based on nextflow76, a workflow man-
agement system. FastQC77 was used to evaluate and merge paired
reads prior to adapter trimming using Trimgalore78.We used STAR79 to
align reads to GRCh38 and htseq-count80 to generate a counts matrix.

For the Wave 1 cohort, transcriptomic data were available for
179 samples from 51 COVID-19 positive ESKD patients (median 3 sam-
ples per patient, range 1–8) (Supplementary Fig. 1d), plus 55 non-
infected ESKD patient samples. For the Wave 2 cohort (17 patients),
transcriptomic data were available for 90 samples collected during
acuteCOVID-19 infection (median of 6 samples per patient, range 3–7),
plus 17 pre-infection samples and 12 convalescent samples.

Prior to further analysis, genes with insufficient counts were
removed using edgeR’s filterByExpr function81; for differential
expression analyses, the ‘group’ argumentwas set to themain groupof
interest. For all analyses, gene expression was TMM normalised82,
converted to counts per million (CPM) and log-transformed. We pri-
marily used ENSEMBL identifiers83, however for plots we report the

HGNC gene ID84 where available. For analyses that consideredmultiple
proteins simultaneously (PCA, WGCNA, MEFISTO, supervised learn-
ing), we additionally: i) removed genes with low variance (33% of
genes with the lowest maximum absolute deviation) using the M3C
package85; ii) centred and scaled the data.

Plasma proteomics
We performed proteomics on EDTA plasma samples using the
aptamer-based SomaScan platform (Somalogic, Boulder, Colorado,
USA). The SomaScan v4.1 assay contains 7288 modified-aptamers
(Somamers) that target human proteins. Sincemore than one aptamer
may target the same protein, these 7288 aptamersmap to 6347 unique
proteins. 48 Somamers were removed due to QC failure, so the final
dataset contains 7240 Somamers representing 6323 unique proteins.
We annotated these proteins using the Human Protein Atlas86; 4980
proteins were labelled as intracellular, 1586 were annotated as mem-
brane proteins and 1160 as secreted (Supplementary Figure 23A).
Many proteins were labelled as both intracellular and as membrane or
secreted, reflecting the biology of protein storage and extra-cellular
secretion/excretion (Supplementary Figure 23B).

We report proteins by their correspondingHGNCgene ID84, which
provides a more standardised nomenclature compared to protein
names and allows direct comparison with the transcriptomic data.

Where multiple Somamers related to the same protein, we
retained these Somamers for univariate analyses such as differential
abundance analyses. However, for analyses that considered multiple
proteins simultaneously (PCA, WGCNA, MEFISTO, supervised learn-
ing), we selected one Somamer at random to represent each protein.
One COVID-19 positive sample in the wave 2 cohort failed QC and was
excluded from the analyses. The expression values for each Somamer
were inverse-rank normalised prior to downstream analyses.

For the Wave 1 cohort, proteomic data were available for
86 samples from 37 COVID-19 positive ESKD patients (median 3 sam-
ples per patient, range 1-3), plus 53 non-infected ESKDpatients. For the
Wave 2 cohort (n = 17 patients), following QC, proteomic data were
available for 102 samples collected serially during acute COVID-19
infection (median of 6 samples per patient, range 5–7) and 16 pre-
infection samples. For one patient, a pre-infection plasma sample was
unavailable.

Statistics and reproducibility
No statistical method was used to predetermine sample size. Analysts
were not blinded to COVID-19 status or severity.

Differential expression analyses: COVID-19 positive versus
negative
We compared COVID-19 positive and negative patients using linear
mixedmodels (LMM), which account for serial samples from the same
individual87. Age, sex, and ethnicity were included as covariates. A
random intercept term was used to estimate the variability between
individuals in the study and thus account for repeated measures. We
performed differential expression analyses for the transcriptomic data
and the proteomic data. The regression model for these analyses in
Wilkinson-style notation was:

E ~ covid_status + sex + age + ethnicity + (1 | individual)

Where, E represents expression (gene or protein, depending on
the data type being analysed) and covid_status was a categorical vari-
able (COVID-19 positive or negative).

For differential expression of proteins, we applied LMMusing the
lmerTest package88. Differential gene expression analysis was per-
formed using the same model formula, applied using the differential
expression for repeated measures (dream) pipeline89 in the var-
iancePartition package90. For all data types, we fitted LMM using
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restrictedmaximum likelihood (REML) and calculated P-values using a
type 3 F-test, in conjunction with Satterthwaite’s method for estimat-
ing the degrees of freedom for fixed effects88. Multiple testing cor-
rection was performed using the Benjamini-Hochberg method and a
1% FDR used for the significance threshold.

The Wave 1 cohort was analysed separately to the Wave 2 court.
For Wave 1, we compared samples from COVID-19 positive ESKD
patients to COVID-19 negative ESKD patients. For Wave 2, we com-
pared samples from COVID-19 positive ESKD patients to samples from
these patients taken approximately 8 months prior to infection.

When reporting thenumber of differentially expressedproteins in
the text we refer to the number of unique proteins rather than the
number of significant Somamers.

Testing transcriptomic and proteomic features for association
with COVID-19 severity
We performed a within-cases analysis, testing for the association of
gene expression with COVID-19 severity at time of sampling. We used
the four-level WHO severity rating (mild, moderate, severe, critical),
which could vary between samples from the same individual reflecting
the clinical status at the time the same was taken. We again used a
linear mixed model to account for samples from the same individual.
The regression model was:

E∼ covid severity + sex + age+ ethnicity + ð1∣individualÞ

The covid_severity variable represents severity at the time of the
sample and was encoded using orthogonal polynomial contrasts to
account for ordinal nature of severity levels.

COVID-19 positive samples from theWave 1 cohort were analysed
separately to those from the Wave 2 cohort.

The same approach was used for the proteomics data.

Gene set variation analysis
To identify pathways that were up- or down-regulated in COVID-19
positive versus negative samples, we applied gene set variation ana-
lysis (GSVA)30. To define gene sets, we used the MSigDb C2 canonical
pathways91; we discarded sets with less than ten genes.We additionally
included a gene set for the peripheral immune response defined for
patients with severe COVID-1931 and a set of type 1 interferons active in
patients with systemic lupus erythematosus (SLE)92. After reduction of
genes into gene sets, we then performed testing for dysregulated
pathways using the same linear mixed modelling approach as for the
differential gene and protein expression analyses. P-values were
adjusted by Benjamini-Hochberg, with a significance threshold
of 1% FDR.

To dissect out the key molecules underpinning enriched path-
ways, we examined the genes that comprise these pathway terms and
identified which of these featuredmost prominently in the differential
gene expression analysis.

We repeated this procedure for testing of association of pathways
with severity at the time of sample using the 4-level ordinal score.

We then applied the same approach to the proteomics data for
the COVID-19 positive versus negative analysis, and for testing asso-
ciations with COVID-19 severity at the time of sample.

Robust rank aggregation
The Wave 1 and Wave 2 cohorts were analysed separately for both the
differential expression analyses between COVID-19 positive and
negative samples and for thewithin-cases severity analyses. To identify
the associations that were most consistent between the Wave 1 and
Wave 2 cohorts, for each analysis, we integrated the P-values for each
cohort using robust rank aggregation (RRA)93. This method identifies
features that are ranked higher than expected across multiple lists.
RRA generates a significance score analogous to a P-value; we -log10

transform these values such that a larger score indicates more con-
sistent associations between theWave 1 cohort and theWave 2 cohort.
RRA was applied to the results of the transcriptomic, proteomic and
GSVA analyses comparing COVID-19 positive versus negative samples
from Wave 1 and Wave 2. Similarly, it was applied to the analyses
testing for association of molecular features with COVID-19 severity at
the time of sampling.

Modelling modular longitudinal trajectories
We examined the temporal trajectories of the transcriptome following
infection, by explicitly modelling molecular markers with respect to
time following COVID-19 symptom onset. We used a two-step
approach.

Step 1. To aid biological interpretation, we first applied a dimen-
sion reduction strategy using weighted gene correlation network
analysis (WGCNA)34 to identify modules of correlated molecular fea-
tures. For this analysis, we combined samples from the Wave 1 and
Wave 2 cohorts. Additionally, since our goal was to perform long-
itudinal analysis, we only selected patients who had been sampled at
least three times prior to 21 days following COVID-19 symptom onset.
The default implementation of WGCNA is not designed for use with
non-independent samples94, so we modified the analysis pipeline by
generating a correlationmatrix using a repeatedmeasures correlation
metric (rmcorr) that is appropriate for repeated measures95. We used
WGCNA’s pickSoftThreshold from similarity function to pick the
minimum soft-thresholding power that satisfied the minimum scale
free topology fitting index (R2 > 0.85) and maximum mean con-
nectivity (100). We subsequently defined signed adjacency and topo-
logical overlap matrices before applying average-linkage hierarchical
clustering. We cut this tree with a hybrid dynamic tree cutting algo-
rithm, with the parameters deepSplit = 4 and minClusterSize = 3096.
Finally, wedefined eigengenes for eachmodule andmerged thosewith
a distance less than 0.25. The eigen-genes provide a numerical repre-
sentation for each module of co-expressed genes.

We used the same approach to analyse the proteomic data.
Step 2. To examine the trajectory of each module over time, we

fitted a linear mixed model with time from symptom onset as an
independent variable and the eigengene (or eigenprotein in the caseof
proteomic modules) as the dependent variable. Time was defined for
each sample as time from first symptoms; where date of first symp-
toms was not available, we instead used date of first positive swab.
Samples that were taken more than 21 days from each individual’s
baseline date were excluded. We used R’s bs function to fit a poly-
nomial spline of degree two to model the expression of modules with
respect to time from baseline97. To test whether modules displayed
different temporal patterns according to the overall clinical course of
COVID-19 (defined as a binary variable indicating whether the peak
WHOseverity scorewasmild/moderate or severe/critical),we included
clinical course as a covariate in the model, and an interaction term
between time from symptom onset and clinical course (TxCC).

The regression model used is displayed using Wilkinson-style
notation below.

eigenexpression∼ clinical course � time+ sex + age + ethnicity
+wave+ ð1∣individualÞ

We extracted the P-values for the TxCC term in this model and
applied Benjamini–Hochberg adjustment, using 5% FDR as the sig-
nificance threshold. A significant interaction effect for the TxCC term
indicates that the module has a different temporal profile in mild/
moderate versus severe/critical disease.

Additional WGCNA module annotation and association testing
To better understand the biological information reflected in the tran-
scriptomic and proteomic modules, we further characterised them
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through a multi-pronged analytical strategy. We tested association of
eigen-genes and eigen-proteins with other variables. First, we tested
for the associationof themoduleswithWHO severity at the time of the
sample using the LMM approach described above in subsection Test-
ing transcriptomic andproteomic features for associationwith COVID-
19 severity, i.e.:

E∼ covid severity + sex + age+ ethnicity +wave + ð1∣individualÞ

Second, since PBMCs represent a mixed population of immune
cells, we investigated whether disease trajectory-associated tran-
scriptomicmodules might reflect shift in cell type proportions. To this
end, we applied CIBERSORTx, a computational algorithm to impute
immune cell fractions from RNA-seq data (see subsection Cell fraction
imputation below). We then tested for correlations between these
imputed immune cell proportions andmodule eigengenes using LMM:

eigenexpression∼ cell fraction+ sex + age + ethnicity
+wave+ ð1∣individualÞ

Both these models included an additional fixed effect (‘wave’) to
reflect the cohort.

Third, we performed pathway enrichment analysis on the mod-
ules using the R package clusterProfiler’s ‘enricher’ function98. Gene
sets were defined using MSigDB C2 canonical pathways91.

Lastly, to understand the relationship between the transcriptomic
and proteomic modules, we performed correlation analysis
using LMMs.

5% FDR was used for statistical significance for these analyses.

Cell fraction imputation
We used CIBERSORTx99 to impute cell fractions from the normalised
bulk RNA-seq dataset. The program was run with default parameters
We inferred the cell fractions of 22 immune cell types in the isolated
PBMCs of each sample using the LM22 signature matrix file100.

Multi-omic longitudinal factor analysis with MEFISTO
MEFISTO101 is an extension ofMulti-Omics Factor Analysis (MOFA) that
can exploit temporal relationships between samples to find factors
that change over time (from baseline). We used this method to find
joint factors of variation in the transcriptomic and proteomic datasets.
For the MEFISTO analysis, we used the same set of samples as in the
network analysis and applied the samepre-processing steps to thedata
(seeMethods—network analysis). Additionally, we removed geneswith
the lowest maximum absolute deviation85 such that the number of
genes retainedwere equal to the number of unique proteinsmeasured
(6,323) to avoid imbalance numbers of features between the tran-
scriptomic and proteomic data which can impact the MEFISTO algo-
rithm. Using the ‘slow’ convergence criterion, MEFISTO identified 8
factors that had aminimal variance explained of 1% in at least one data
modality.

We then applied the longitudinal model described earlier to test
for an interaction effect between time from first symptoms and clinical
course, with a latent factor identified by MEFISTO as the dependent
variable. The regressionmodel used is displayed usingWilkinson-style
notation below:

latent factor∼ clinical course � time + sex + age+ ethnicity
+wave + ð1∣individualÞ

Longitudinal modelling of cytokines and cytokine receptors
We modelled the temporal profiles of 232 plasma proteins that fell
within the KEGG pathway ‘Cytokine-cytokine receptor interaction’. As
for the longitudinal analyses described earlier, we used a linear mixed
model with a time x clinical course interaction term.

P∼ clinical course � time+ sex + age+ ethnicity +wave
+ ð1∣individualÞ

P values for the time x clinical course interaction were extracted
and adjusted for multiple testing with the Benjamini-Hochberg pro-
cedure, with significance threshold of 5% FDR.

Supervised learning
The goal of this analysis was to predict clinical severity from the
molecular features (transcriptomic, proteomic or both). We per-
formed supervised learning using the R caret framework102; caret
uses the randomForest package to fit random forest models and
glmnet103 to fit lasso models. For this analysis, we only included
samples on which both transcriptomics and proteomics had been
performed. We then selected the earliest sample for each individual
at which they had reached their peak COVID-19WHO severity score,
so that there was one sample per patient. We then categorised the
clinical severity score corresponding to each sample into a binary
variable such that patients with a WHO severity score of mild or
moderate were considered mild/moderate and those with a WHO
score of severe or critical were considered severe/critical. This
resulted in n = 37 mild/moderate samples and n = 14 severe/critical
samples.

We trained models using Monte Carlo cross-validation for: (i) the
plasma proteomic data alone (6323 features); (ii) the PBMC RNA-seq
data alone (12,225 features); and (iii) the combined proteomic and
RNA-seq datasets. The first step in this training process was to create
200 random partitions of the data, such that 80% of the data was used
to train the model in each resample and 20% was retained as a vali-
dation set. In each resample, we calculated the area under the curve
(AUC) of the receiver operating characteristic (ROC) curve. We then
calculated confidence intervals for the 200AUC-ROCvalues generated
for each model and feature type.

The random forest model’s parameters were kept constant at
500 trees and themtry value (number of proteins randomly sampled
as candidates at each node) was calculated as the square root of the
number of features. After cross-validation, we fitted a final random
forest model using the entirety of the dataset. We extracted
important features from this model using the R randomFor-
estExplainer package, based on the accuracy decrease metric (the
average decrease in prediction accuracy upon swapping out a fea-
ture). For the lasso model, the lambda value that maximised the
mean AUC-ROC during cross-validation was selected. We recorded
the features selected by the lasso model in each data resample;
feature importance was subsequently defined as the number of
models in which each feature had a non-zero coefficient. The feature
importance metrics from both models were scaled by dividing their
values by the maximum value, such that the most important feature
has an importance metric of 1.

Differential gene expression analysis: pre-infection versus
recovery samples
For the 12 individuals in the Wave 2 cohort for whomwe collected a
convalescent sample (approximately 2 months post-infection;
range 41-55 days from the initial sample), we performed a differ-
ential gene expression analysis comparing these samples to the
paired pre-infection samples using LMM, implemented with the R
dream package89. Age, sex and ethnicity were included as covari-
ates and a random intercept term used to account for the paired
nature of the samples. Statistical significance was defined as 1%
FDR. To identify enriched pathways in the list of differentially
expressed genes, we performed overrepresentation analyses using
the same approach as described above for annotating the WGCNA
modules.
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Flow cytometry
Flow cytometry analysis was performed on a subset of the Wave 2
PBMC samples. We examined samples taken during acute COVID-19
from 17 patients (of whom 9 patients had a mild/moderate clinical
course and 8 patients with severe/critical course), and pre-infection
samples from 15 of these same patients. 12 samples with low cell
number recovery (less than 10,000 PBMCs) were excluded from the
analysis.

Cryopreserved PBMCs were thawed in humidified 37 °C, 5% CO2

incubator and resuspended in thawing medium (RPMI, 20% FBS).
PBMCs were washed twice with PBS and stained with Zombie Yellow
LIVE/DEAD (Biolegend) following the manfacturer’s protocol to
exclude dead cells. Then, PBMCs were washed twice with FACS buffer
(1%BSA, 0.09%Azide, 1mMEDTA), andFc receptorswereblockedwith
Human TruStain Fc Receptor Blocking Solution (Biolegend). Then,
surface staining were performed using the selected fluorochrome-
conjugated monoclonal antibodies detailed in Supplementary Table 5
for 20min at 4 °C. Following incubation, cells were fixed and per-
meabilized using the eBioscience™ Foxp3/Transcription Factor Stain-
ing Buffer Set (Invitrogen) for intracellular staining. Cells were
incubated with selected antibodies or isotype controls for 30min at
4 °C and resuspended in FACs buffer for analysis. Aurora Spectral Flow
Cytometry (Cytek®) and FlowJo software, version 10 (Tree Star Inc.
Ashland, OR, USA) were used for analysis of all samples. The gating
strategy used for flow cytometry is shown in Supplementary Figs. 27-
28. Prior to gating cell population of interest, cell debris was removed
based on FCS/SSC and only live cell (BV570 Zombie Yellow - negative)
populations were analysed.

Flow cytometry statistical analysis
Flow cytometry statistical analysis was performed with GraphPad
Prism (v9). To evaluate decomposition performance by CIBERSORTx
analysis, cell proportion estimates were compared to cell percentages
from Flow Cytometry analysis using Pearson’s correlation analysis
(n = 68 samples).We were unable to examine for the presence of LDGs
using our flow cytometry data since this was performed on cryopre-
served PBMCs and LDGs do not survive the freeze-thaw process
(whereas we performed transcriptomics on RNA extracted from fresh
PBMCs). We observed significant correlation of estimated cell pro-
portions from CIBERSORTx analysis compared to proportions mea-
sured by flow cytometry for all other cell types (Pearson r >0.4045,
two-tailed p-value < 0.0001).

For severity analysis, one sampleper patientwas selected at a time
that coincided with the expected spike in the inflammatory response
(nearest sample to day 7 after symptom onset; no more than ±72 h).
Patients were classified according to the overall peak illness severity
into two groups (mild/moderate = 9, severe/critical = 8). Change of cell
proportion across timewere accessedby grouping samples into 4 days
interval post COVID-19-positive test. One-way ANOVA was used to
calculate significant differences between multiple groups with Dun-
net’s correction for multiple-way comparisons. Significance is based
upon p-value < 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The individual-level transcriptomics (counts), proteomics and flow
cytometry data are available without restriction from Zenodo (https://
doi.org/10.5281/zenodo.6497251). Processed subsets of these data
corresponding to specific Figures are provided in the Source Data file.
The raw RNA-seq reads are under restricted access to comply with UK
GDPR legislation and have been deposited in the European Phenome-

Genome archive (EGA) under study accession EGAS00001006778;
requests for access can be made to the Data Access Committee.

In this study, we utilised the whole blood bulk RNA-seq generated
by the COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium
study7, which is available from Zenodo (https://doi.org/10.5281/
zenodo.6120249). We also used the SomaScan proteomics data of
Filbin et al.12, accessed from Mendeley Data (https://doi.org/10.17632/
nf853r8xsj.2). Source data are provided with this paper.

Code availability
An archived GitHub repository containing custom analysis code is
available from Zenodo (https://doi.org/10.5281/zenodo.7333789).
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