16 research outputs found

    Disruption of SATB2 or its long-range cis-regulation by SOX9 causes a syndromic form of Pierre Robin Sequence

    Get PDF
    Heterozygous loss-of-function (LOF) mutations in the gene encoding the DNA-binding protein, SATB2, result in micrognathia and cleft palate in both humans and mice. In three unrelated individuals, we show that translocation breakpoints (BPs) up to 896 kb 3′ of SATB2 polyadenylation site cause a phenotype which is indistinguishable from that caused by SATB2 LOF mutations. This syndrome comprises long nose, small mouth, micrognathia, cleft palate, arachnodactyly and intellectual disability. These BPs map to a gene desert between PLCL1 and SATB2. We identified three putative cis-regulatory elements (CRE1–3) using a comparative genomic approach each of which would be placed in trans relative to SATB2 by all three BPs. CRE1–3 each bind p300 and mono-methylated H3K4 consistent with enhancer function. In silico analysis suggested that CRE1–3 contain one or more conserved SOX9-binding sites, and this binding was confirmed using chromatin immunoprecipitation on cells derived from mouse embryonic pharyngeal arch. Interphase bacterial artificial chromosome fluorescence in situ hybridization measurements in embryonic craniofacial tissues showed that the orthologous region in mice exhibits Satb2 expression-dependent chromatin decondensation consistent with Satb2 being a target gene of CRE1–3. To assess their in vivo function, we made multiple stable reporter transgenic lines for each enhancer in zebrafish. CRE2 was shown to drive SATB2-like expression in the embryonic craniofacial region. This expression could be eliminated by mutating the SOX9-binding site of CRE2. These observations suggest that SATB2 and SOX9 may be acting together via complex cis-regulation to coordinate the growth of the developing jaw

    Large Scale Association Analysis Identifies Three Susceptibility Loci for Coronary Artery Disease

    Get PDF
    Genome wide association studies (GWAS) and their replications that have associated DNA variants with myocardial infarction (MI) and/or coronary artery disease (CAD) are predominantly based on populations of European or Eastern Asian descent. Replication of the most significantly associated polymorphisms in multiple populations with distinctive genetic backgrounds and lifestyles is crucial to the understanding of the pathophysiology of a multifactorial disease like CAD. We have used our Lebanese cohort to perform a replication study of nine previously identified CAD/MI susceptibility loci (LTA, CDKN2A-CDKN2B, CELSR2-PSRC1-SORT1, CXCL12, MTHFD1L, WDR12, PCSK9, SH2B3, and SLC22A3), and 88 genes in related phenotypes. The study was conducted on 2,002 patients with detailed demographic, clinical characteristics, and cardiac catheterization results. One marker, rs6922269, in MTHFD1L was significantly protective against MI (OR = 0.68, p = 0.0035), while the variant rs4977574 in CDKN2A-CDKN2B was significantly associated with MI (OR = 1.33, p = 0.0086). Associations were detected after adjustment for family history of CAD, gender, hypertension, hyperlipidemia, diabetes, and smoking. The parallel study of 88 previously published genes in related phenotypes encompassed 20,225 markers, three quarters of which with imputed genotypes The study was based on our genome-wide genotype data set, with imputation across the whole genome to HapMap II release 22 using HapMap CEU population as a reference. Analysis was conducted on both the genotyped and imputed variants in the 88 regions covering selected genes. This approach replicated HNRNPA3P1-CXCL12 association with CAD and identified new significant associations of CDKAL1, ST6GAL1, and PTPRD with CAD. Our study provides evidence for the importance of the multifactorial aspect of CAD/MI and describes genes predisposing to their etiology

    Matrix metalloproteinases and genetic mouse models in cancer research: a mini-review

    Get PDF

    Genetic and environmental influences on total plasma homocysteine and its role in coronary artery disease risk.

    No full text
    BACKGROUND: Elevated levels of total plasma homocysteine are a risk factor for atherosclerotic disease. AIMS: The rationale behind this study is to explore the correlation between degree and site of coronary lesion and hyperhomocysteinemia in Lebanese CAD patients and assess environmental and genetic factors for elevated levels of total plasma homocysteine. METHODS: A total of 2644 patients were analyzed for traditional CAD risk factors. Logistic regression was performed to determine the association of hyperhomocysteinemia with degree and site of coronary lesions controlling for risk factors. Environmental and genetic factors for hyperhomocysteinemia were analyzed by logistic regression using a candidate gene approach. RESULTS: Traditional risk factors were correlated with stenosis. Hyperhomocysteinemia associated with increased risk of overall stenosis, and risk of mild and severe occlusion in major arteries. Hyperhomocysteinemia and hypertension were highly correlated suggesting that hyperhomocysteinemia acts as a hypertensive agent leading to CAD. Diuretics and genetic polymorphisms in MTHFR and SLCO1B1 were associated with hyperhomocysteinemia. CONCLUSIONS: Hyperhomocysteinemia is a medical indicator of specific vessel stenosis in the Lebanese population. Hypertension is a major link between hyperhomocysteinemia and CAD occurrence. Genetic polymorphisms and diuretics' intake explain partly elevated homocysteine levels. This study has important implications in CAD risk prediction
    corecore