2,566 research outputs found

    Missing Data in Paediatric Clinical Trials

    Get PDF

    Genetic characterization of human coxsackievirus A6 variants associated with atypical hand, foot and mouth disease: a potential role of recombination in emergence and pathogenicity

    Get PDF
    Human coxsackievirus A6 (CVA6) is an enterically transmitted enterovirus. Until recently, CVA6 infections were considered as being of minor clinical significance, and only rarely aetiologically linked with hand, foot and mouth disease (HFMD) associated with other species A enteroviruses (particularly EV71 and CVA16). From 2008 onwards, however, CVA6 infections have been associated with several outbreaks worldwide of atypical HFMD (aHFMD) accompanied by a varicelliform rash. We recently reported CVA6-associated eczema herpeticum occurring predominantly in children and young adults in Edinburgh in January and February 2014. To investigate genetic determinants of novel clinical phenotypes of CVA6, we genetically characterized and analysed CVA6 variants associated with eczema herpeticum in Edinburgh in 2014 and those with aHFMD in CAV isolates collected from 2008. A total of eight recombinant forms (RFs) have circulated worldwide over the past 10 years, with the particularly recent appearance of RF-H associated with eczema herpeticum cases in Edinburgh in 2014. Comparison of phylogenies and divergence of complete genome sequences of CVA6 identified recombination breakpoints in 2A-2C, within VP3, and between 5' untranslated region and VP1. A Bayesian temporal reconstruction of CVA6 evolution since 2004 provided estimates of dates and the actual recombination events that generated more recently appearing recombination groups (RF-E, -F, -G and -H). Associations were observed between recombination groups and clinical presentations of herpangina, aHFMD and eczema herpeticum, but not with VP1 or other structural genes. These observations provided evidence that NS gene regions may potentially contribute to clinical phenotypes and outcomes of CVA6 infection

    Universal Formulae for Percolation Thresholds

    Full text link
    A power law is postulated for both site and bond percolation thresholds. The formula writes pc=p0[(d1)(q1)]ad bp_c=p_0[(d-1)(q-1)]^{-a}d^{\ b}, where dd is the space dimension and qq the coordination number. All thresholds up to dd\rightarrow \infty are found to belong to only three universality classes. For first two classes b=0b=0 for site dilution while b=ab=a for bond dilution. The last one associated to high dimensions is characterized by b=2a1b=2a-1 for both sites and bonds. Classes are defined by a set of value for {p0; a}\{p_0; \ a\}. Deviations from available numerical estimates at d7d \leq 7 are within ±0.008\pm 0.008 and ±0.0004\pm 0.0004 for high dimensional hypercubic expansions at d8d \geq 8. The formula is found to be also valid for Ising critical temperatures.Comment: 11 pages, latex, 3 figures not include

    Identifying networks with common organizational principles

    Full text link
    Many complex systems can be represented as networks, and the problem of network comparison is becoming increasingly relevant. There are many techniques for network comparison, from simply comparing network summary statistics to sophisticated but computationally costly alignment-based approaches. Yet it remains challenging to accurately cluster networks that are of a different size and density, but hypothesized to be structurally similar. In this paper, we address this problem by introducing a new network comparison methodology that is aimed at identifying common organizational principles in networks. The methodology is simple, intuitive and applicable in a wide variety of settings ranging from the functional classification of proteins to tracking the evolution of a world trade network.Comment: 26 pages, 7 figure

    Recent, independent and anthropogenic origins of Trypanosoma cruzi hybrids.

    Get PDF
    The single celled eukaryote Trypanosoma cruzi, a parasite transmitted by numerous species of triatomine bug in the Americas, causes Chagas disease in humans. T. cruzi generally reproduces asexually and appears to have a clonal population structure. However, two of the six major circulating genetic lineages, TcV and TcVI, are TcII-TcIII inter-lineage hybrids that are frequently isolated from humans in regions where chronic Chagas disease is particularly severe. Nevertheless, a prevalent view is that hybridisation events in T. cruzi were evolutionarily ancient and that active recombination is of little epidemiological importance. We analysed genotypes of hybrid and non-hybrid T. cruzi strains for markers representing three distinct evolutionary rates: nuclear GPI sequences (n = 88), mitochondrial COII-ND1 sequences (n = 107) and 28 polymorphic microsatellite loci (n = 35). Using Maximum Likelihood and Bayesian phylogenetic approaches we dated key evolutionary events in the T. cruzi clade including the emergence of hybrid lineages TcV and TcVI, which we estimated to have occurred within the last 60,000 years. We also found evidence for recent genetic exchange between TcIII and TcIV and between TcI and TcIV. These findings show that evolution of novel recombinants remains a potential epidemiological risk. The clearly distinguishable microsatellite genotypes of TcV and TcVI were highly heterozygous and displayed minimal intra-lineage diversity indicative of even earlier origins than sequence-based estimates. Natural hybrid genotypes resembled typical meiotic F1 progeny, however, evidence for mitochondrial introgression, absence of haploid forms and previous experimental crosses indicate that sexual reproduction in T. cruzi may involve alternatives to canonical meiosis. Overall, the data support two independent hybridisation events between TcII and TcIII and a recent, rapid spread of the hybrid progeny in domestic transmission cycles concomitant with, or as a result of, disruption of natural transmission cycles by human activities

    Microscopic analysis of multipole susceptibility of actinide dioxides: A scenario of multipole ordering in AmO2_2

    Full text link
    By evaluating multipole susceptibility of a seven-orbital impurity Anderson model with the use of a numerical renormalization group method, we discuss possible multipole states of actinide dioxides at low temperatures. In particular, here we point out a possible scenario for multipole ordering in americium dioxide. For Am4+^{4+} ion with five 5f5f electrons, it is considered that the ground state is Γ7\Gamma_7^{-} doublet and the first excited state is Γ8\Gamma_8^{-} quartet, but we remark that the f5f^5 ground state is easily converted due to the competition between spin-orbit coupling and Coulomb interactions. Then, we find that the Γ8\Gamma_8^- quartet can be the ground state of AmO2_2 even for the same crystalline electric field potential. In the case of Γ8\Gamma_8^- quartet ground state, the numerical results suggest that high-order multipoles such as quadrupole and octupole can be relevant to AmO2_2.Comment: 8 pages, 4 figures. To appear in Phys. Rev.

    The Patient-Oriented Eczema Measure in young children:Responsiveness and minimal clinically important difference

    Get PDF
    BACKGROUND: The Patient‐Oriented Eczema Measure (POEM) has been recommended as the core patient‐reported outcome measure for trials of eczema treatments. Using data from the Choice of Moisturiser for Eczema Treatment randomized feasibility study, we assess the responsiveness to change and determine the minimal clinically important difference (MCID) of the POEM in young children with eczema. METHODS: Responsiveness to change by repeated administrations of the POEM was investigated in relation to change recalled using the Parent Global Assessment (PGA) measure. Five methods of determining the MCID of the POEM were employed; three anchor‐based methods using PGA as the anchor: the within‐patient score change, between‐patient score change and sensitivity and specificity method, and two distribution‐based methods: effect size estimate and the one half standard deviation of the baseline distribution of POEM scores. RESULTS: Successive POEM scores were found to be responsive to change in eczema severity. The MCID of the POEM change score, in relation to a slight improvement in eczema severity as recalled by parents on the PGA, estimated by the within‐patient score change (4.27), the between‐patient score change (2.89) and the sensitivity and specificity method (3.00) was similar to the one half standard deviation of the POEM baseline scores (2.94) and the effect size estimate (2.50). CONCLUSIONS: The Patient‐Oriented Eczema Measure as applied to young children is responsive to change, and the MCID is around 3. This study will encourage the use of POEM and aid in determining sample size for future randomized controlled trials of treatments for eczema in young children

    Critical Exponent for the Density of Percolating Flux

    Full text link
    This paper is a study of some of the critical properties of a simple model for flux. The model is motivated by gauge theory and is equivalent to the Ising model in three dimensions. The phase with condensed flux is studied. This is the ordered phase of the Ising model and the high temperature, deconfined phase of the gauge theory. The flux picture will be used in this phase. Near the transition, the density is low enough so that flux variables remain useful. There is a finite density of finite flux clusters on both sides of the phase transition. In the deconfined phase, there is also an infinite, percolating network of flux with a density that vanishes as TTc+T \rightarrow T_{c}^{+}. On both sides of the critical point, the nonanalyticity in the total flux density is characterized by the exponent (1α)(1-\alpha). The main result of this paper is a calculation of the critical exponent for the percolating network. The exponent for the density of the percolating cluster is ζ=(1α)(φ1) \zeta = (1-\alpha) - (\varphi-1). The specific heat exponent α\alpha and the crossover exponent φ\varphi can be computed in the ϵ\epsilon-expansion. Since ζ<(1α)\zeta < (1-\alpha), the variation in the separate densities is much more rapid than that of the total. Flux is moving from the infinite cluster to the finite clusters much more rapidly than the total density is decreasing.Comment: 20 pages, no figures, Latex/Revtex 3, UCD-93-2

    Site percolation and random walks on d-dimensional Kagome lattices

    Full text link
    The site percolation problem is studied on d-dimensional generalisations of the Kagome' lattice. These lattices are isotropic and have the same coordination number q as the hyper-cubic lattices in d dimensions, namely q=2d. The site percolation thresholds are calculated numerically for d= 3, 4, 5, and 6. The scaling of these thresholds as a function of dimension d, or alternatively q, is different than for hypercubic lattices: p_c ~ 2/q instead of p_c ~ 1/(q-1). The latter is the Bethe approximation, which is usually assumed to hold for all lattices in high dimensions. A series expansion is calculated, in order to understand the different behaviour of the Kagome' lattice. The return probability of a random walker on these lattices is also shown to scale as 2/q. For bond percolation on d-dimensional diamond lattices these results imply p_c ~ 1/(q-1).Comment: 11 pages, LaTeX, 8 figures (EPS format), submitted to J. Phys.
    corecore