8 research outputs found

    ∆Np63/p40 correlates with the location and phenotype of basal/mesenchymal cancer stem-like cells in human ER+ and HER2+ breast cancers

    Get PDF
    ΔNp63, also known as p40, regulates stemness of normal mammary gland epithelium and provides stem cell characteristics in basal and HER2‐driven murine breast cancer models. Whilst ΔNp63/p40 is a characteristic feature of normal basal cells and basal‐type triple‐negative breast cancer, some receptor‐positive breast cancers express ΔNp63/p40 and its overexpression imparts cancer stem cell‐like properties in ER+ cell lines. However, the incidence of ER+ and HER2+ tumours that express ΔNp63/p40 is unclear and the phenotype of ΔNp63/p40+ cells in these tumours remains uncertain. Using immunohistochemistry with p63 isoform‐specific antibodies, we identified a ΔNp63/p40+ tumour cell subpopulation in 100 of 173 (58%) non‐triple negative breast cancers and the presence of this population associated with improved survival in patients with ER−/HER2+ tumours (p = 0.006). Furthermore, 41% of ER+/PR+ and/or HER2+ locally metastatic breast cancers expressed ΔNp63/p40, and these cells commonly accounted for <1% of the metastatic tumour cell population that localised to the tumour/stroma interface, exhibited an undifferentiated phenotype and were CD44+/ALDH−. In vitro studies revealed that MCF7 and T47D (ER+) and BT‐474 (HER2+) breast cancer cell lines similarly contained a small subpopulation of ΔNp63/p40+ cells that increased in mammospheres. In vivo, MCF7 xenografts contained ΔNp63/p40+ cells with a similar phenotype to primary ER+ cancers. Consistent with tumour samples, these cells also showed a distinct location at the tumour/stroma interface, suggesting a role for paracrine factors in the induction or maintenance of ΔNp63/p40. Thus, ΔNp63/p40 is commonly present in a small population of tumour cells with a distinct phenotype and location in ER+ and/or HER2+ human breast cancers.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153532/1/cjp2149_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153532/2/cjp2149.pd

    STAT3 inhibition with Galiellalactone effectively targets the prostate cancer stem-like cell population."

    Get PDF
    Cancer stem cells (CSCs) are a small subpopulation of quiescent cells with the potential to differentiate into tumor cells. CSCs are involved in tumor initiation and progression and contribute to treatment failure through their intrinsic resistance to chemo- or radiotherapy, thus representing a substantial concern for cancer treatment. Prostate CSCs’ activity has been shown to be regulated by the transcription factor Signal Transducer and Activator of Transcription 3 (STAT3). Here we investigated the effect of galiellalactone (GL), a direct STAT3 inhibitor, on CSCs derived from prostate cancer patients, on docetaxel-resistant spheres with stem cell characteristics, on CSCs obtained from the DU145 cell line in vitro and on DU145 tumors in vivo. We found that GL significantly reduced the viability of docetaxel-resistant and patient-derived spheres. Moreover, CSCs isolated from DU145 cells were sensitive to low concentrations of GL, and the treatment with GL suppressed their viability and their ability to form colonies and spheres. STAT3 inhibition down regulated transcriptional targets of STAT3 in these cells, indicating STAT3 activity in CSCs. Our results indicate that GL can target the prostate stem cell niche in patient-derived cells, in docetaxel-resistant spheres and in an in vitro model. We conclude that GL represents a promising therapeutic approach for prostate cancer patients, as it reduces the viability of prostate cancer-therapy-resistant cells in both CSCs and non-CSC populations

    STAT3, stem cells, cancer stem cells and p63

    No full text

    Importance of the origin of mesenchymal (stem) stromal cells in cancer biology: “alliance” or “war” in intercellular signals

    No full text
    corecore