4,272 research outputs found

    Beewatching: A project for monitoring bees through photos

    Get PDF
    Bees play a key role in natural and agro-ecosystems and their diversity is worldwide threatened by anthropogenic causes. Despite this, there is little awareness of the existence of the numerous species of wild bees, and the common name “bee” is very often exclusively associated with Apis mellifera. Our aim was to create a citizen science project in Italy with the following objectives: (a) raising awareness of the importance and diversity of bees, (b) obtaining data on the biology, ecology and distribution of Italian species, and (c) launching the monitoring of alien bees. The first step of the project was to create a website platform with a section containing informative datasheets of the wild bee families and of the most common bee genera present in Italy, a form to send reports of observed bees and an interactive map with all citizen’s reports. During the 2 years of the project 1086 reports were sent by 269 users, with 38 Apoidea genera reported on 190 plant genera; furthermore, 22 reports regarding the alien species Megachile sculpturalis arrived. The majority of bees (34 genera) were observed on spontaneous plants, including 115 genera native to Italy. Considering the increasing number of reports and data obtained in these first two years of the project, our objectives seem to be achieved. Future steps will be to outline the profile of beewatchers, to plan activities in a more targeted way, and also to start some sub-projects for conservation purposes

    Ionic Liquids as Reaction Media in Catalytic Oxidations with Manganese and Iron Pyridyl Triazacyclononane Complexes

    Get PDF
    A family of bioinspired iron and manganese complexes of general formula [MII(CF3SO3)2(Me,XPyTACN)], where Me,XPyTACN = 1-[2’-(6-X-pyridyl)methyl]-4,7-dimethyl-1,4,7-triazacyclononane, and M = Fe, and Mn has been studied as efficient catalytic systems for hydrogen peroxide oxidation reactions. Previous work revealed that the manganese derivative [MnII(CF3SO3)2(Me,HPyTACN)], 1, in acetonitrile exhibits a high catalytic activity in the epoxidation of a wide range of olefins (TON: 810-4500), using acetic acid and hydrogen peroxide as primary oxidant. The analogous iron based complex [FeII(CF3SO3)2(Me,HPyTACN)], 2a and [FeII(CF3SO3)2(Me,MePyTACN)], 2b promote the high added value oxidation reaction of alkanes in mild conditions. In this work sustainability and selectivity of the oxidative system is improved with the use of the ionic liquids (ILs) as reaction medium. The possibility to recycle the catalytic phase without loss of the activity with respect to the original reaction in acetonitrile (MeCN) is reported

    Amplituhedron meets Jeffrey-Kirwan Residue

    Get PDF
    The tree amplituhedra A^(m)_n,k are mathematical objects generalising the notion of polytopes into the Grassmannian. Proposed for m=4 as a geometric construction encoding tree-level scattering amplitudes in planar N=4 super Yang-Mills theory, they are mathematically interesting for any m. In this paper we strengthen the relation between scattering amplitudes and geometry by linking the amplituhedron to the Jeffrey-Kirwan residue, a powerful concept in symplectic and algebraic geometry. We focus on a particular class of amplituhedra in any dimension, namely cyclic polytopes, and their even-dimensional conjugates. We show how the Jeffrey-Kirwan residue prescription allows to extract the correct amplituhedron volume functions in all these cases. Notably, this also naturally exposes the rich combinatorial and geometric structures of amplituhedra, such as their regular triangulations.Peer reviewedFinal Accepted Versio

    Biodiversity evaluation: From endorsed indexes to inclusion of a pollinator indicator

    Get PDF
    There is increasing interest in evaluating biodiversity to preserve ecosystem services. Researchers can sustain policymakers by providing tools, such as indexes and indicators, that need constant implementation to become accepted standards. Implementation may vary from re-evaluation of existing indicators to introduction of new ones based on emerging threats to biodiversity. With the aim of contributing to the compelling need to estimate and counterbalance pollinator loss, we screened existing bioindicators. We first selected indexes/indicators applied to agricultural contexts and concurrently endorsed by a regulatory agency. We then extended our analysis to indexes/indicators based on arthropod taxa and formally recognized at least by national bodies. Our procedure identified a combination of surveys of various animal taxa and remote landscape analyses (e.g., using a GIS and other cartographic tools). When the animals are arthropods, most indexes/indicators can only address confined environments (e.g., grasslands, riversides). Indicator strength was improved by the simultaneous inclusion of biotic and abiotic components. Pollinator sensitivity to changes at micro-habitat level is widely appreciated and may help distinguish agricultural practices. A biodiversity index based on pollinators, including a wide monitoring scheme supplemented by citizen science, is currently fostered at the European level. The results obtained using such an index may finally enable focusing of strategic funding. Our analysis will help to reach this goal

    Electronic properties of mono-substituted tetraferrocenyl porphyrins in solution and on a gold surface: Assessment of the influencing factors for photoelectrochemical applications

    Get PDF
    Two unsymmetric meso-tetraferrocenyl-containing porphyrins of general formula Fc3(FcCOR)Por (Fc=ferrocenyl, R=CH3 or (CH2)5Br, Por=porphyrin) were prepared and characterized by a variety of spectroscopic methods, whereas their redox properties were investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) approaches. The mixed-valence [Fc3(FcCOR)Por]n+ (n=1,3) were investigated using spectroelectrochemical as well as chemical oxidation methods and corroborated with density functional theory (DFT) calculations. Inter-valence charge-transfer (IVCT) transitions in [Fc3(FcCOR)Por]+ were analyzed, and the resulting data matched closely previously reported complexes and were assigned as Robin–Day class II mixed-valence compounds. Self-assembled monolayers (SAMs) of a thioacetyl derivative (Fc3(FcCO(CH2)5SCOCH3)Por) were also prepared and characterized. Photoelectrochemical properties of SAMs in different electrolyte systems were investigated by electrochemical techniques and photocurrent generation experiments, showing that the choice of electrolyte is critical for efficiency of redox-active SAMs

    An accurate approach for computational pKa determination of phenolic compounds

    Get PDF
    Computational chemistry is a valuable tool, as it allows for in silico prediction of key parameters of novel compounds, such as pKa. In the framework of computational pKa determination, the literature offers several approaches based on different level of theories, functionals and continuum solvation models. However, correction factors are often used to provide reliable models that adequately predict pKa. In this work, an accurate protocol based on a direct approach is proposed for computing phenols pKa. Importantly, this methodology does not require the use of correction factors or mathematical fitting, making it highly practical, easy to use and fast. Above all, DFT calculations performed in the presence two explicit water molecules using CAM-B3LYP functional with 6-311G+dp basis set and a solvation model based on density (SMD) led to accurate pKa values. In particular, calculations performed on a series of 13 differently substituted phenols provided reliable results, with a mean absolute error of 0.3. Furthermore, the model achieves accurate results with -CN and -NO2 substituents, which are usually excluded from computational pKa studies, enabling easy and reliable pKa determination in a wide range of phenols

    A neutral-pH aqueous redox flow battery based on sustainable organic electrolytes

    Get PDF
    Aqueous organic redox flow batteries (AORFBs) have gained increasing attention for large-scale storage due to the advantages of decoupled energy and power, safe and sustainable chemistry, and tunability of the redox-active species. Here, we report the development of a neutral-pH AORFB assembled with a highly water-soluble ferrocene 1,1-disulfonic disodium salt (DS−Fc) and two viologen derivatives, 1,1’-bis(3-sulfonatopropyl)-viologen (BSP−Vi) and Bis(3-trimethylammonium)propyl viologen tetrachloride (BTMAP−Vi). Synthesized electrolytes showed excellent redox potential, good diffusion coefficient, and a good transfer rate constant. In particular, BSP−Vi has a more negative redox potential (-0.4 V) than BTMAP−Vi (−0.3 V) and faster kinetics; therefore, it was selected to be assembled in an AORFB as anolyte, coupled with DS−Fc as catholyte.The resulting AORFB based on BTMAP−Vi/DS−Fc and BSP−Vi/DS−Fc redox couple had a high cell voltage (1.2 V and 1.3 V, respectively) and theoretical energy density (13 WhL−1 and 14 WhL−1 respectively) and was able to sustain 70 charge-discharge cycles with energy efficiency as high as 97 %

    Panchromatic light harvesting and stabilizing charge-separated states in corrole–phthalocyanine conjugates through coordinating a subphthalocyanine

    Get PDF
    Owing to the electron-donating and -accepting nature of corroles (Corr) and phthalocyanines (Pc), respectively, we designed and developed two novel covalently linked Corr-Pc conjugates. The synthetic route allows the preparation of the target conjugates in satisfying yields. Comprehensive steady-state absorption, fluorescence, and electrochemical assays enabled insights into energy and electron-transfer processes upon photoexcitation. Coordinating a pyridine-appended subphthalocyanine (SubPc) to the Pc of the conjugate sets up the ways and means to realize the first example of an array composed by three different porphyrinoids, which drives a cascade of energy and charge-transfer processes. Importantly, the SubPc assists in stabilizing the charge-separated state, that is, one-electron oxidized Corr and the one electron-reduced Pc, upon photoexcitation by means of a reductive charge transfer to the SubPc. To the best of our knowledge, this is the first case of an intramolecular oxidation of a Corr within electron-donor–acceptor conjugates by means of just photoexcitation. Moreover, the combination of Corr, Pc, and SubPc guarantees panchromatic absorption across the visible range of the solar spectrum, with the SubPc covering the „green gap“ that usually affects porphyrinoids
    • 

    corecore