63 research outputs found

    Comparison of methods to monitor dogs with hypercortisolism treated with trilostane

    Get PDF
    Background: The use of adrenocorticotropic hormone stimulation test as method to monitor efficacy of trilostane treatment of hypercortisolism (HC) in dogs has been questioned. Objectives: To evaluate and compare 12 methods with which to monitor efficacy of trilostane treatment in dogs with HC. Animals: Forty-five client-owned dogs with HC treated with trilostane q12h. Methods: Prospective cross-sectional observational study. The dogs were categorized as well-controlled, undercontrolled, and unwell through a clinical score obtained from an owner questionnaire. The ability to correctly identify trilostane-treatment control of dogs with HC with the following variables was evaluated: before trilostane serum cortisol (prepill), before-ACTH serum cortisol, post-ACTH serum cortisol, plasma endogenous ACTH concentrations, prepill/eACTH ratio, serum haptoglobin (Hp) concentration, serum alanine aminotransferase (ALT), gamma-glutamyl transferase (γGT) and alkaline phosphatase activity, urine specific gravity, and urinary cortisol : creatinine ratio. Results: Ninety-four re-evaluations of 44 dogs were included; 5 re-evaluations of 5 unwell dogs were excluded. Haptoglobin was significantly associated with the clinical score (P <.001) and in the receiver operating characteristic analysis, Hp cutoff of 151 mg/dL correctly identified 90.0% of well-controlled dogs (specificity) and 65.6% of undercontrolled dogs (sensitivity). Alanine aminotransferase (P =.01) and γGT (P =.009) were significantly higher in undercontrolled dogs. Cutoff of ALT and γGT greater than or equal to 86 U/L and 5.8 U/L, respectively, were significantly associated with poor control of HC by trilostane. Conclusions and Clinical Importance: Of all the 12 variables, Hp, and to a lesser degree ALT and γGT, could be considered additional tools to the clinical picture to identify well-controlled and undercontrolled trilostane-treated dogs

    Circulating MicroRNAs as Non-invasive Biomarkers for Canine Cushing's Syndrome

    Get PDF
    Canine Cushing's syndrome (hypercortisolism) can be caused by a pituitary tumor (pituitary-dependent hypercortisolism; PDH) or a cortisol-secreting adrenocortical tumor (csACT). For both cases, non-invasive biomarkers that could pre-operatively predict the risk of recurrence after surgery would greatly impact clinical decision making. The aim of this study was to determine whether circulating microRNAs (miRNAs) can be used as diagnostic (presence of PDH or csACT) and/or prognostic (disease recurrence, histological grade) non-invasive biomarkers for canine Cushing's syndrome. After a pilot study with 40 miRNAs in blood samples of healthy dogs (n = 3), dogs with PDH (n = 3) and dogs with a csACT (n = 4), we selected a total of 20 miRNAs for the definitive study. In the definitive study, these 20 miRNAs were analyzed in blood samples of healthy dogs (n = 6), dogs with PDH (n = 19, pre- and post-operative samples) and dogs with a csACT (n = 26, pre-operative samples). In dogs with PDH, six miRNAs (miR-122-5p, miR-126-5p, miR-141-3p, miR-222-3p, miR-375-3p and miR-483-3p) were differentially expressed compared to healthy dogs. Of one miRNA, miR-122-5p, the expression levels did not overlap between healthy dogs and dogs with PDH (p = 2.9x10−4), significantly decreased after hypophysectomy (p = 0.013), and were significantly higher (p = 0.017) in dogs with recurrence (n = 3) than in dogs without recurrence for at least one year after hypophysectomy (n = 7). In dogs with csACTs, two miRNAs (miR-483-3p and miR-223-3p) were differentially expressed compared to healthy dogs. Additionally, miR-141-3p was expressed significantly lower (p = 0.009) in dogs with csACTs that had a histopathological Utrecht score of ≥ 11 compared to those with a score of <11. These results indicate that circulating miRNAs have the potential to be non-invasive biomarkers in dogs with Cushing's syndrome that may contribute to clinical decision making

    Diagnosis, treatment and outcome of pheochromocytoma in a cat

    Get PDF
    Pheochromocytoma in cats is a rare clinical condition characterised by the development of a secretory endocrine tumour that arises from the adrenal medulla. An 8-year-old castrated male, domestic shorthair cat was referred for further investigation of a 4-month history of progressive weight loss with normal appetite, polyuria/polydipsia, generalised weakness, and severe hypertension. Sonography and computed tomography of the abdomen disclosed a mass arising from the left adrenal gland. The contralateral adrenal gland was normal in size and shape. Results from a low dose dexamethasone suppression test and measurements of plasma aldosterone concentration and plasma renin activity ruled out a cortisol-secreting tumour and aldosteronoma. The clinical presentation made a sex-steroid secreting tumour unlikely. Increased plasma metanephrine and normetanephrine concentrations prioritised the differential diagnosis of pheochromocytoma. The cat underwent adrenalectomy of the left gland and histopathological diagnosis with immunohistochemical markers confirmed the diagnosis

    Molecular alterations in dog pheochromocytomas and paragangliomas

    Get PDF
    Recently, genetic alterations in the genes encoding succinate dehydrogenase subunit B and D (SDHB and SDHD) were identified in pet dogs that presented with spontaneously arising pheochromocytomas (PCC) and paragangliomas (PGL; together PPGL), suggesting dogs might be an interesting comparative model for the study of human PPGL. To study whether canine PPGL resembled human PPGL, we investigated a series of 50 canine PPGLs by immunohistochemistry to determine the expression of synaptophysin (SYP), tyrosine hydroxylase (TH) and succinate dehydrogenase subunit A (SDHA) and B (SDHB). In parallel, 25 canine PPGLs were screened for mutations in SDHB and SDHD by Sanger sequencing. To detect large chromosomal alterations, single nucleotide polymorphism (SNP) arrays were performed for 11 PPGLs, including cases for which fresh frozen tissue was available. The immunohistochemical markers stained positive in the majority of canine PPGLs. Genetic screening of the canine tumors revealed the previously described variants in four cases; SDHB p.Arg38Gln (n = 1) and SDHD p.Lys122Arg (n = 3). Furthermore, the SNP arrays revealed large chromosomal alterations of which the loss of chromosome 5, partly homologous to human chromosome 1p and chromosome 11, was the most frequent finding (100% of the six cases with chromosomal alterations). In conclusion, canine and human PPGLs show similar genomic alterations, suggestive of common interspecies PPGL-related pathways

    Transcriptome sequencing reveals two subtypes of cortisol-secreting adrenocortical tumours in dogs and identifies CYP26B1 as a potential new therapeutic target

    Get PDF
    Cushing's syndrome (CS) is a serious endocrine disorder that is relatively common in dogs, but rare in humans. In ~15%–20% of cases, CS is caused by a cortisol-secreting adrenocortical tumour (csACT). To identify differentially expressed genes that can improve prognostic predictions after surgery and represent novel treatment targets, we performed RNA sequencing on csACTs (n = 48) and normal adrenal cortices (NACs; n = 10) of dogs. A gene was declared differentially expressed when the adjusted p-value was 2 or < −2. Between NACs and csACTs, 98 genes were differentially expressed. Based on the principal component analysis (PCA) the csACTs were separated in two groups, of which Group 1 had significantly better survival after adrenalectomy (p =.002) than Group 2. Between csACT Group G1 and Group 2, 77 genes were differentially expressed. One of these, cytochrome P450 26B1 (CYP26B1), was significantly associated with survival in both our canine csACTs and in a publicly available data set of 33 human cortisol-secreting adrenocortical carcinomas. In the validation cohort, CYP26B1 was also expressed significantly higher (p =.012) in canine csACTs compared with NACs. In future studies it would be interesting to determine whether CYP26B1 inhibitors could inhibit csACT growth in both dogs and humans

    Laparoscopic vs. open adrenalectomy: perioperative data and survival analysis in 70 dogs with an adrenal tumor

    Get PDF
    Adrenalectomy is the treatment of choice in case of functional adrenal tumors and malignant adrenal incidentalomas. Laparoscopic adrenalectomy (LA) in dogs has gained popularity in recent years, however, clinical studies on large patient populations are scarce. This retrospective study describes perioperative and recurrence data, survival, and prognostic factors in 70 dogs that underwent LA or open adrenalectomy (OA) in our hospital between 2008 and 2022. Diagnosis was based on history, clinical signs, endocrine function tests and advanced diagnostic imaging. Laparoscopic adrenalectomy was performed in 42 dogs (n = 27 naturally occurring hypercortisolism, n = 4 pheochromocytoma, n = 1 pheochromocytoma with concurrent hypercortisolism, n = 10 incidentaloma) and OA in 28 dogs (n = 22 hypercortisolism, n = 3 pheochromocytoma, n = 3 incidentaloma). Bilateral adrenalectomy was performed in 8/70 dogs. Surgical duration of LA and OA did not differ significantly in unilateral and bilateral procedures (P = 0.108 and P = 0.101, respectively). Systemic hypertension occurred in 7/41 and 1/28 dogs during LA and OA, respectively (P = 0.130). Hypotension occurred in 2/41 and 4/28 dogs during LA and OA, respectively (P = 0.214). A total of 40/42 dogs in the LA group and 27/28 in the OA group survived to discharge (P = 0.810). Mean hospital stay was significantly shorter (P = 0.006) after LA (1.5 days, range 1–3) than after OA (2.2 days, range 1–4). No significant differences were demonstrated between LA and OA groups in recurrence of adrenal-dependent endocrine disease (P = 0.332), disease-free period (P = 0.733) and survival time (P = 0.353). The disease-specific 1-, 2- and 3-year survival rates were 95, 89, and 89% after LA and 92, 88, and 81% after OA. Tumor size was significantly associated with the occurrence of a recurrence. In addition, tumor size had a negative effect on the disease-free period and survival time. This study shows a favorable outcome of both LA and OA in dogs. Based on low perioperative complication rate, short hospitalization time and long-term outcomes comparable to OA in selected cases, the less invasive laparoscopic approach is considered the preferred technique

    Reference intervals for plasma, urinary, and salivary concentrations of free metanephrines in dogs: Relevance to the diagnosis of pheochromocytoma

    Get PDF
    Background Measurement of free metanephrines is recommended for screening of pheochromocytoma (PCC) but requires appropriate reference intervals (RIs). Hypothesis/Objectives To report RIs for plasma, urinary and salivary concentrations of free metanephrines and to determine the diagnostic performance of plasma free normetanephrine (pNMN) and metanephrine (pMN) concentrations in dogs with PCC, hypercortisolism (HC), and nonadrenal illness (NAI). Animals Eighty healthy dogs, 11 PCC dogs, 25 HC dogs, 6 NAI dogs. Methods Plasma, urine, and saliva were collected prospectively from healthy dogs, and free metanephrine concentrations were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, medical records of dogs that had plasma free metanephrine concentrations measured by LC-MS/MS between 2018-2021 were studied retrospectively. Results The RIs for free metanephrines in plasma, urine and saliva are reported. Dogs with PCC had significantly higher pNMN than dogs with HC (P 3.56 nmol/L) showed high sensitivity (100%, 95% confidence interval [CI]: 72-100) and specificity (94%, 95% CI: 79-99) for diagnosis of PCC, whereas pMN (>2.49 nmol/L) showed moderate sensitivity (73%, 95% CI: 39-94) and high specificity (94%, 95% CI: 79-99). Conclusions and Clinical Importance With establishment of these RIs, biochemical testing for PCC in dogs can be substantially improved. Measurement of pNMN is superior to pMN in dogs with PCC

    Laparoscopic vs. open adrenalectomy: perioperative data and survival analysis in 70 dogs with an adrenal tumor

    Get PDF
    Adrenalectomy is the treatment of choice in case of functional adrenal tumors and malignant adrenal incidentalomas. Laparoscopic adrenalectomy (LA) in dogs has gained popularity in recent years, however, clinical studies on large patient populations are scarce. This retrospective study describes perioperative and recurrence data, survival, and prognostic factors in 70 dogs that underwent LA or open adrenalectomy (OA) in our hospital between 2008 and 2022. Diagnosis was based on history, clinical signs, endocrine function tests and advanced diagnostic imaging. Laparoscopic adrenalectomy was performed in 42 dogs (n = 27 naturally occurring hypercortisolism, n = 4 pheochromocytoma, n = 1 pheochromocytoma with concurrent hypercortisolism, n = 10 incidentaloma) and OA in 28 dogs (n = 22 hypercortisolism, n = 3 pheochromocytoma, n = 3 incidentaloma). Bilateral adrenalectomy was performed in 8/70 dogs. Surgical duration of LA and OA did not differ significantly in unilateral and bilateral procedures (P = 0.108 and P = 0.101, respectively). Systemic hypertension occurred in 7/41 and 1/28 dogs during LA and OA, respectively (P = 0.130). Hypotension occurred in 2/41 and 4/28 dogs during LA and OA, respectively (P = 0.214). A total of 40/42 dogs in the LA group and 27/28 in the OA group survived to discharge (P = 0.810). Mean hospital stay was significantly shorter (P = 0.006) after LA (1.5 days, range 1–3) than after OA (2.2 days, range 1–4). No significant differences were demonstrated between LA and OA groups in recurrence of adrenal-dependent endocrine disease (P = 0.332), disease-free period (P = 0.733) and survival time (P = 0.353). The disease-specific 1-, 2- and 3-year survival rates were 95, 89, and 89% after LA and 92, 88, and 81% after OA. Tumor size was significantly associated with the occurrence of a recurrence. In addition, tumor size had a negative effect on the disease-free period and survival time. This study shows a favorable outcome of both LA and OA in dogs. Based on low perioperative complication rate, short hospitalization time and long-term outcomes comparable to OA in selected cases, the less invasive laparoscopic approach is considered the preferred technique

    Whole transcriptome analysis of canine pheochromocytoma and paraganglioma

    Get PDF
    Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors arising from the chromaffin cells in the adrenal medulla and extra-adrenal paraganglia, respectively. Local invasion, concurrent disorders, and metastases prevent surgical removal, which is the most effective treatment to date. Given the current lack of effective medical treatment, there is a need for novel therapeutic strategies. To identify druggable pathways driving PPGL development, we performed RNA sequencing on PPGLs (n = 19) and normal adrenal medullas (NAMs; n = 10) of dogs. Principal component analysis (PCA) revealed that PPGLs clearly clustered apart from NAMs. In total, 4,218 genes were differentially expressed between PPGLs and NAMs. Of these, 232 had a log2 fold change of &gt;3 or &lt; −3, of which 149 were upregulated in PPGLs, and 83 were downregulated. Compared with NAMs, PPGLs had increased expression of genes related to the cell cycle, tumor development, progression and metastasis, hypoxia and angiogenesis, and the Wnt signaling pathway, and decreased expression of genes related to adrenal steroidogenesis. Our data revealed several overexpressed genes that could provide targets for novel therapeutics, such as Ret Proto-Oncogene (RET), Dopamine Receptor D2 (DRD2), and Secreted Frizzled Related Protein 2 (SFRP2). Based on the PCA, PPGLs were classified into 2 groups, of which group 1 had significantly higher Ki67 scores (p = 0.035) and shorter survival times (p = 0.04) than group 2. Increased expression of 1 of the differentially expressed genes between group 1 and 2, pleiotrophin (PTN), appeared to correlate with a more aggressive tumor phenotype. This study has shed light on the transcriptomic profile of canine PPGL, yielding new insights into the pathogenesis of these tumors in dogs, and revealed potential novel targets for therapy. In addition, we identified 2 transcriptionally distinct groups of PPGLs that had significantly different survival times
    corecore