20 research outputs found

    Semi-Automatic Classification Of Histopathological Images: Dealing With Inter-Slide Variations

    Get PDF
    Introduction/ Background The large size and high resolution of histopathological whole slide images renders their manual annotation time-consuming and costly. State-of-the-art computer-based segmentation approaches are generally able to classify tissue reliably, but strong inter-slide variations between training and evaluation data can cause significant decreases in classification accuracy. Aims In this study, we focus on alpha-SMA stainings of the mouse kidney, and in particular on the classification of glomerular vs. non-glomerular regions. Even though all slides had been recorded using a common staining protocol, inter-slide variations could be observed. We investigate the impact of these variations as well as methods of resolution. Methods We propose an interactive, semi-automatic tissue classification approach [1] which adapts a pre-trained classification model to the new image on which classification should be performed. Image patches for which the class (glomerular/non-glomerular) is uncertain are automatically selected and presented to the user to determine the class label. The user interaction step is repeated several times to iteratively adjust the model to the characteristics of the new image. For image representation and classification, well known methods from the literature are utilized. Specifically, we combine Local Binary Patters with the support vector classifier. Results In case of 50 available labelled sample patches of a certain whole slide image, the overall classification rate increased from 92 % to 98 % through including the interactive labelling step. Even with only 20 labelled patches, accuracy already increased to 97 %. Without a pre-trained model, if training is performed on target domain data only, 88 % (20 labelled samples) and 95 % (50 labelled samples) accuracy, respectively, were obtained. If enough target domain data was available (about 20 images), the amount of source domain data was of minor relevance. The difference in outcome between a source domain training data set containing 100 patches from one whole slide image and a set containing 700 patches from seven images was lower than 1 %. Contrarily, without target domain data, the difference in accuracy was 10 % (82 % compared to 92 %) between these two settings. Execution runtime between two interaction steps is significantly below one second (0.23 s), which is an important usability criterion. It proved to be beneficial to select specific target domain data in an active learning sense based on the currently available trained model. While experimental evaluation provided strong empirical evidence for increased classification performance with the proposed method, the additional manual effort can be kept at a low level. The labelling of e.g. 20 images per slide is surely less time consuming than the validation of a complete whole slide image processed with a fully automatic, but less reliable, segmentation approach. Finally, it should be highlighted that the proposed interaction protocol could easily be adapted to other histopathological classification or segmentation tasks, also for implementation in a clinical system.

    Structure Preserving Stain Normalization of Histopathology Images Using Self Supervised Semantic Guidance

    Get PDF
    © 2020, Springer Nature Switzerland AG. Although generative adversarial network (GAN) based style transfer is state of the art in histopathology color-stain normalization, they do not explicitly integrate structural information of tissues. We propose a self-supervised approach to incorporate semantic guidance into a GAN based stain normalization framework and preserve detailed structural information. Our method does not require manual segmentation maps which is a significant advantage over existing methods. We integrate semantic information at different layers between a pre-trained semantic network and the stain color normalization network. The proposed scheme outperforms other color normalization methods leading to better classification and segmentation performance

    Evaluation of Different Distortion Correction Methods and Interpolation Techniques for an Automated Classification of Celiac Disease

    Get PDF
    Due to the optics used in endoscopes, a typical degradation observed in endoscopic images are barrel-type distortions. In this work we investigate the impact of methods used to correct such distortions in images on the classification accuracy in the context of automated celiac disease classification. For this purpose we compare various different distortion correction methods and apply them to endoscopic images, which are subsequently classified. Since the interpolation used in such methods is also assumed to have an influence on the resulting classification accuracies, we also investigate different interpolation methods and their impact on the classification performance. In order to be able to make solid statements about the benefit of distortion correction we use various different feature extraction methods used to obtain features for the classification. Our experiments show that it is not possible to make a clear statement about the usefulness of distortion correction methods in the context of an automated diagnosis of celiac disease. This is mainly due to the fact that an eventual benefit of distortion correction highly depends on the feature extraction method used for the classification
    corecore