29 research outputs found

    Unified Semi-Classical Description of Intrinsic Spin-Hall Effect in Spintronic, Optical, and Graphene Systems

    Full text link
    A semi-classical description of the intrinsic spin-Hall effect (SHE) is presented which is relevant for a wide class of systems. A heuristic model for the SHE is developed, starting with a fully quantum mechanical treatment, from which we construct an intuitive expression for the spin-Hall current and conductivity. Our method makes transparent the physical mechanism which drives the effect, and unifies the SHE across several spintronic and optical systems. Finally, we propose an analogous effect in bilayer graphene.Comment: 5 pages, 2 figures, 1 tabl

    Incidence, mechanism and prognostic value of activated AKT in pancreas cancer

    Get PDF
    When activated, the serine/threonine kinase AKT mediates an antiapoptotic signal implicated in chemoresistance of various cancers. The mechanism(s) of AKT activation are unknown, though overexpression of HER-2/neu has been implicated in breast cancer. Therefore, we determined the incidence of activated AKT in human pancreatic cancer, whether HER-2/neu is involved in AKT activation, and if AKT activation is associated with biologic behaviour. HER-2/neu expression and AKT activation were examined in seven pancreatic cancer cell lines by Western blotting. The in vitro effect of HER-2/neu inhibition on AKT activation was similarly determined. Finally, 78 pancreatic cancer specimens were examined for AKT activation and HER-2/neu overexpression, and correlated with the clinical prognostic variable of histologic grade. HER-2/neu was overexpressed in two of seven cell lines; these two cell lines demonstrated the highest level of AKT activation. Inhibition of HER-2/neu reduced AKT activation in vitro. AKT was activated in 46 out of 78 (59%) of the pancreatic cancers; HER-2/neu overexpression correlated with AKT activation (P=0.015). Furthermore, AKT activation was correlated with higher histologic tumour grade (P=0.047). Thus, it is concluded that AKT is frequently activated in pancreatic cancer; this antiapoptotic signal may be mediated by HER-2/neu overexpression. AKT activation is associated with tumour grade, an important prognostic factor

    EGCG Enhances the Therapeutic Potential of Gemcitabine and CP690550 by Inhibiting STAT3 Signaling Pathway in Human Pancreatic Cancer

    Get PDF
    Background: Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogene, which promotes cell survival, proliferation, motility and progression in cancer cells. Targeting STAT3 signaling may lead to the development of novel therapeutic approaches for human cancers. Here, we examined the effects of epigallocathechin gallate (EGCG) on STAT3 signaling in pancreatic cancer cells, and assessed the therapeutic potential of EGCG with gemcitabine or JAK3 inhibitor CP690550 (Tasocitinib) for the treatment and/or prevention of pancreatic cancer. Methodology/Principal Findings: Cell viability and apoptosis were measured by XTT assay and TUNEL staining, respectively. Gene and protein expressions were measured by qRT-PCR and Western blot analysis, respectively. The results revealed that EGCG inhibited the expression of phospho and total JAK3 and STAT3, STAT3 transcription and activation, and the expression of STAT3-regulated genes, resulting in the inhibition of cell motility, migration and invasion, and the induction of caspase-3 and PARP cleavage. The inhibition of STAT3 enhanced the inhibitory effects of EGCG on cell motility and viability. Additionally, gemcitabine and CP690550 alone inhibited STAT3 target genes and synergized with EGCG to inhibit cell viability and induce apoptosis in pancreatic cancer cells. Conclusions/Significance: Overall, these results suggest that EGCG suppresses the growth, invasion and migration of pancreatic cancer cells, and induces apoptosis by interfering with the STAT3 signaling pathway. Moreover, EGCG furthe

    Resveratrol Inhibits Growth of Orthotopic Pancreatic Tumors through Activation of FOXO Transcription Factors

    Get PDF
    BACKGROUND: The forkhead transcription factors of the O class (FOXO) play a direct role in cellular proliferation, oxidative stress response, and tumorigenesis. The objectives of this study were to examine whether FOXOs regulate antitumor activities of resveratrol in pancreatic cancer cells in vitro and in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Pancreatic cancer cell lines were treated with resveratrol. Cell viability, colony formation, apoptosis and cell cycle were measured by XTT, soft agar, TUNEL and flow cytometry assays, respectively. FOXO nuclear translocation, DNA binding and transcriptional activities were measured by fluorescence technique, gelshift and luciferase assay, respectively. Mice were orthotopically implanted with PANC1 cells and orally gavaged with resveratrol. The components of PI3K and ERK pathways, FOXOs and their target gene expressions were measured by the Western blot analysis. Resveratrol inhibited cell viability and colony formations, and induced apoptosis through caspase-3 activation in four pancreatic cancer cell lines (PANC-1, MIA PaCa-2, Hs766T, and AsPC-1). Resveratrol induced cell cycle arrest by up-regulating the expression of p21/CIP1, p27/KIP1 and inhibiting the expression of cyclin D1. Resveratrol induced apoptosis by up-regulating Bim and activating caspase-3. Resveratrol inhibited phosphorylation of FOXOs, and enhanced their nuclear translocation, FOXO-DNA binding and transcriptional activities. The inhibition of PI3K/AKT and MEK/ERK pathways induced FOXO transcriptional activity and apoptosis. Furthermore, deletion of FOXO genes abrogated resveratrol-induced cell cycle arrest and apoptosis. Finally, resveratrol-treated mice showed significant inhibition in tumor growth which was associated with reduced phosphorylation of ERK, PI3K, AKT, FOXO1 and FOXO3a, and induction of apoptosis and FOXO target genes. CONCLUSIONS: These data suggest that inhibition of ERK and AKT pathways act together to activate FOXO transcription factors which are involved in resveratrol-mediated pancreatic tumor growth suppression
    corecore